Traits of seven medicinal plants in Taihang Mountains and their responses to soil factors
-
摘要:
为深入了解植物在适应环境的过程中逐渐形成的性状差异及其影响因素,选择太行山地区常见的7种药用植物挂金灯(Alkekengi officinarum)、蕺菜(Houttuynia cordata)、艾(Artemisia argyi)、活血丹(Glechoma longituba)、枸杞(Lycium chinense)、忍冬(Lonicera japonica)和薄荷(Mentha canadensis)为研究对象,通过测定植物光合、结构性状及土壤理化性质,分析不同植物性状差异及其对土壤因子的响应。结果表明:太行山7种药用植物中,薄荷和枸杞表现出较优的性状组合,其光合速率与叶干物质含量较高,蒸腾速率与比叶面积较低,且枸杞的根冠比显著高于其他植物。Spearman相关性分析表明,叶片蒸腾速率、气孔导度与叶干物质含量、植物单株生物量呈显著负相关,胞间CO2浓度与叶片相对含水率呈显著正相关,水分利用效率与比叶面积呈显著负相关。太行山坡地7种药用植物性状变化主要来源于种间变异,光合和结构性状种间变异系数为11.08%~164.42%,除植物单株生物量和根冠比表现为强变异外,其他性状均表现为中等变异;不同性状种内变异系数平均为28.75%,处于较低水平。植物性状与土壤因子的RDA分析结果表明,土壤pH、黏粒含量对植物性状变异的解释率之和达72.30%,是影响7种药用植物性状特征的主要土壤因子,且电导率与土壤pH、黏粒含量间呈显著正相关;通过因子分析得出,有机碳、全氮、碳氮比与挂金灯、薄荷、艾、枸杞性状变化的相关性较大,土壤含水量与活血丹性状变化相关性较大。综上,太行山地区7种药用植物性状差异明显,可以通过土壤pH、土壤颗粒组成及电导率等影响植物性状,应针对特定的植物品种,进行有差别的土壤改良。
Abstract:In order to understand the trait differences of plants gradually formed during the process of adapting to the environment and their influencing factors, seven medicinal plants commonly found in Taihang Mountains were selected as the research objects, including Alkekengi officinarum, Houttuynia cordata, Artemisia argyi, Glechoma longituba, Lycium chinense, Lonicera japonica and Mentha canadensis. The plant photosynthesis, structural traits and soil physicochemical properties were measured to analyze the trait differences and their responses to soil factors. The results showed that among the seven medicinal plants, Mentha canadensis and Lycium chinense showed superior trait combinations, with higher photosynthetic rate and leaf dry matter content, and lower transpiration rate and specific leaf area; the root-to-shoot ratio of Lycium chinense was significantly higher than other plants. Spearman correlation analysis showed that leaf transpiration rate and stomatal conductance were significantly negatively correlated with leaf dry matter content and plant biomass per plant. There was a significant positive correlation between intercellular CO2 concentration and leaf relative water content, while there was a significant negative correlation between water use efficiency and specific leaf area. The changes in the traits of the seven medicinal plants on Taihang Mountain slope mainly came from interspecific variation, with the variation coefficient of photosynthetic and structural traits ranging from 11.08% to 164.42%. Except for strong variation in plant biomass per plant and root-to-shoot ratio, all other traits showed moderate variation. The average intraspecific variation coefficient of different traits was 28.75%, which was at a low level. The RDA analysis of plant traits and soil factors showed that the sum of the explanatory rates of soil pH and clay content on plant trait variation was 72.30%, which was the main soil factor affecting the traits of the seven medicinal plants, and the soil conductivity was significantly positively correlated with soil pH and clay content. Through factor analysis, the organic carbon, total nitrogen, and C/N ratio were more correlated with the changes of the traits of Alkekengi officinarum, Mentha canadensis, Artemisia argyi and Lycium chinense, and the soil moisture was more correlated with that of Glechoma longituba. In summary, the traits of the seven medicinal plants were obviously different in Taihang Mountains, which could be affected by soil pH, soil particle composition, soil conductivity, and so on. Differentiated soil improvements should be carried out for specific plant varieties.
-
Key words:
- medicinal plants /
- traits differences /
- adaptation strategies /
- soil factors /
- Taihang Mountains
-
表 1 7种药用植物光合性状变异系数
Table 1. Coefficients of variation for photosynthetic traits of seven medicinal plants
% 种类 Tr Pn Ci Gs WUE 种内变异 Ao 2.23 8.94 1.30 3.84 11.02 Hc 5.49 11.34 0.32 9.73 5.74 Aa 7.78 15.68 1.09 4.37 20.34 Gl 12.18 5.33 1.02 9.25 13.40 Lc 26.16 15.64 3.35 32.30 30.32 Lj 131.00 62.38 20.58 136.84 60.63 Mc 92.19 54.23 16.25 109.12 47.98 种间变异 44.90 41.99 11.08 50.99 68.87 表 2 7种药用植物结构性状变异系数
Table 2. Coefficients of variation for structural traits of seven medicinal plants
% 种类 SLA LDMC RWC R/S WAF TB 种内变异 Ao 13.60 3.15 8.16 30.25 8.53 82.74 Hc 32.34 25.52 5.49 111.00 3.91 68.03 Aa 18.98 13.04 12.38 22.99 3.88 42.45 Gl 12.46 6.16 7.24 12.93 15.18 25.05 Lc 22.02 24.30 3.55 71.42 4.50 97.99 Lj 29.83 14.37 10.11 76.22 4.74 19.88 Mc 26.16 7.08 9.22 112.80 0.97 107.48 种间变异 48.89 43.75 14.35 134.19 16.18 164.42 表 3 土壤部分指标间相关性分析
Table 3. Correlation analysis between some soil indicators
指标 pH EC TOC CLA pH 1 EC 0.443* 1 TOC −0.282 0.152 1 CLA 0.450* 0.529** 0.096 1 表 4 各主成分旋转载荷、特征值及贡献率
Table 4. Rotational load, eigenvalue and contribution rate of each principal component
指标 第1主成分 第2主成分 第3主成分 Tr 0.468 0.862 0.056 Pn −0.016 0.933 0.035 Ci 0.707 0.566 0.124 Gs 0.346 0.92 0.014 SLA 0.897 0.098 −0.126 LDMC −0.882 −0.334 −0.180 RWC 0.859 0.136 0.013 R/S 0.022 0.049 0.996 特征值 3.160 2.923 1.061 贡献率/% 39.502 36.535 13.267 累计贡献率/% 39.502 76.037 89.304 表 5 各植物性状综合得分(F)与土壤因子的相关性
Table 5. Correlation between comprehensive scores (F) of plant traits and soil factors
项目 pH SWC EC TN TOC CLA C/N F(Ao) 0.612 −0.547 0.980** 0.258 0.582 0.966* 0.951* F(Hc) −0.826 0.508 0.978* 0.403 −0.807 0.319 −0.535 F(Aa) −0.200 −0.400 0.977* 0.929* 0.939* 0.049 −0.866 F(Gl) −0.362 0.996** 0.965* −0.337 −0.458 0.612 0.034 F(Lc) 0.731 −0.266 0.761 0.978* 0.338 0.747 −0.568 F(Lj) 0.266 −0.349 −0.652 −0.628 0.762 −0.686 0.707 F(Mc) 0.612 −0.547 0.980** 0.258 0.582 0.966* 0.951* -
[1] NICOTRA A B, HERMES J P, JONES C S, et al. Geographic variation and plasticity to water and nutrients in Pelargonium australe[J]. New Phytologist,2007,176(1):136-149. doi: 10.1111/j.1469-8137.2007.02157.x [2] 李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1): 88-98.LI Y H, LU Q, WU B, et al. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 88-98. [3] ZIRBEL C R, BASSETT T, GRMAN E, et al. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration[J]. Journal of Applied Ecology,2017,54(4):1070-1079. doi: 10.1111/1365-2664.12885 [4] 黄庆阳, 谢立红, 曹宏杰, 等. 五大连池火山山杨叶功能性状的变异特征[J]. 北京林业大学学报,2021,43(2):81-89.HUANG Q Y, XIE L H, CAO H J, et al. Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China[J]. Journal of Beijing Forestry University,2021,43(2):81-89. [5] 胡耀升, 么旭阳, 刘艳红. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系[J]. 生态学报,2014,34(20):5915-5924.HU Y S, YAO X Y, LIU Y H. The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains[J]. Acta Ecologica Sinica,2014,34(20):5915-5924. [6] 唐青青, 黄永涛, 丁易, 等. 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异[J]. 生物多样性,2016,24(3):262-270. doi: 10.17520/biods.2015200TANG Q Q, HUANG Y T, DING Y, et al. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests[J]. Biodiversity Science,2016,24(3):262-270. doi: 10.17520/biods.2015200 [7] CASTELLANOS C C, NEWTON A C. Leaf and stem trait variation and plant functional types in 113 woody species of a seasonally dry tropical forest. Colombia Forestal, 2015, 18(1): 117-138. [8] 李远智. 亚高寒草甸不同空间尺度种内性状变异与群落构建机制研究[D]. 兰州: 兰州大学, 2013. [9] 郝颢晶, 关潇, 曹明, 等. 呼伦贝尔沙化草地不同生态修复阶段植物群落特征研究[J]. 环境工程技术学报,2023,13(4):1573-1585.HAO H J, GUAN X, CAO M, et al. Study on the characteristics of plant communities in different ecological restoration stages of Hulun Buir sandy grassland[J]. Journal of Environmental Engineering Technology,2023,13(4):1573-1585. [10] 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报,2010,30(21):5747-5758.ZHANG H W, MA J Y, SUN W, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica,2010,30(21):5747-5758. [11] 杨雅兰, 过龙根, 尹成杰, 等. 云南大理洱源西湖浮游植物功能群季节演替特征[J]. 环境工程技术学报,2023,13(2):625-631.YANG Y L, GUO L G, YIN C J, et al. Study on the seasonal succession of phytoplankton functional groups in Eryuan West Lake of Dali City, Yunnan Province[J]. Journal of Environmental Engineering Technology,2023,13(2):625-631. [12] 许洺山, 赵延涛, 杨晓东, 等. 浙江天童木本植物叶片性状空间变异的地统计学分析[J]. 植物生态学报,2016,40(1):48-59. doi: 10.17521/cjpe.2015.0246XU M S, ZHAO Y T, YANG X D, et al. Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province[J]. Chinese Journal of Plant Ecology,2016,40(1):48-59. doi: 10.17521/cjpe.2015.0246 [13] 庞世龙, 欧芷阳, 申文辉, 等. 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略[J]. 广西植物,2021,41(5):707-714.PANG S L, OU Z Y, SHEN W H, et al. Leaf function traits variations and adaptive strategies of dominant woody economic plants in Karst area of Southwest Guangxi[J]. Guihaia,2021,41(5):707-714. [14] 李娟霞, 田青. 兰州市6种园林植物叶片形态和光合生理特征. 西北农林科技大学学报(自然科学版)[J]. 2022, 50(1): 72-80.LI J X, TIAN Q. Leaf morphology and photosynthetic physiological characteristics of the leaves of six garden plants in Lanzhou[J]. Journal of Northwest A & F University (Natural Science Edition). 2022, 50(1): 72-80. [15] 刘洋, 侯占山, 赵爽, 等. 太行山片麻岩山区造地边坡植被恢复过程中植物多样性与土壤特性的演变[J]. 生态学报,2018,38(15):5331-5339.LIU Y, HOU Z S, ZHAO S, et al. Evolution of plant species diversity and soil characteristics on hillslopes during vegetation restoration in the gneiss region of the Taihang Mountains after reclamation[J]. Acta Ecologica Sinica,2018,38(15):5331-5339. [16] 吴芹. 土壤水分对3个造林树种光合生理生化特性的影响[D]. 泰安: 山东农业大学, 2013. [17] 郑淑霞, 上官周平. 8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J]. 生态学报,2006,26(4):1080-1087.ZHENG S X, SHANGGUAN Z P. Comparison of leaf gas exchange characteristics and chlorophyll fluorescence parameters in eight broad-leaved tree species[J]. Acta Ecologica Sinica,2006,26(4):1080-1087. [18] 刘旻霞. 亚高寒草甸不同坡向植物光合生理和叶片形态差异[J]. 生态学报,2017,37(24):8526-8536.LIU M X. Studies on physiological and leaf morphological traits for photosynthesis on different slopes in a subalpine meadow[J]. Acta Ecologica Sinica,2017,37(24):8526-8536. [19] RICHARDSON B A, CHANEY L, SHAW N L, et al. Will phenotypic plasticity affecing flowering phenology keep pace with climate change[J]. Global Change Biology,2017,23:2499-2508. doi: 10.1111/gcb.13532 [20] FAJARDO A, SIEFERT A. Temperate rain forest species partition fine-scale gradients in light availability based on their leaf mass per area (LMA)[J]. Annals of Botany,2016,118(7):1307-1315. doi: 10.1093/aob/mcw184 [21] 毛伟, 李玉霖, 赵学勇, 等. 3种藜科植物叶特性因子对土壤养分、水分及种群密度的响应[J]. 中国沙漠, 29(3): 468-473.MAO W, LI Y L, ZHAO X Y, et al. Respondence of leaf traits of three chenopodiaceae plants to soil nutrients, water content and plant density[J]. Journal of Desert Research, 2009, 29(3): 468-473. [22] 龙毅, 孟凡栋, 王常顺, 等. 高寒草甸主要植物地上地下生物量分布及退化对根冠比和根系表面积的影响[J]. 广西植物,2015,35(4):532-538. doi: 10.11931/guihaia.gxzw201406032LONG Y, MENG F D, WANG C S, et al. Above-and below-ground biomass distribution of main alpine meadow plants and impact of degradation on root/shoot ratio and root area[J]. Guihaia,2015,35(4):532-538. doi: 10.11931/guihaia.gxzw201406032 [23] 周光良, 罗杰, 胡红玲, 等. 干旱胁迫对巨桉幼树生长及光合特性的影响[J]. 生态与农村环境学报,2015,31(6):888-894. doi: 10.11934/j.issn.1673-4831.2015.06.014ZHOU G L, LUO J, HU H L, et al. Effects of drought stress on growth and photosynthetic characteristics of Eucalyptus grandis saplings[J]. Journal of Ecology and Rural Environment,2015,31(6):888-894. doi: 10.11934/j.issn.1673-4831.2015.06.014 [24] 赵思金, 韩烈保, 宋桂龙, 等. 不同人工灌木与草混播群落中4种灌木根系分布的研究[J]. 西北植物学报,2008(4):799-804. doi: 10.3321/j.issn:1000-4025.2008.04.026ZHAO S J, HAN L B, SONG G L, et al. Study on root distribution of four species of shrub in artificial shrub and grass mixture communities[J]. Acta Botanica Boreali-Occidentalia Sinica,2008(4):799-804. doi: 10.3321/j.issn:1000-4025.2008.04.026 [25] 韩玲, 赵成章, 冯威, 等. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报,2017,41(8):872-881. doi: 10.17521/cjpe.2016.0316HAN L, ZHAO C Z, FEI W, et al. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland[J]. Chinese Journal of Plant Ecology,2017,41(8):872-881. doi: 10.17521/cjpe.2016.0316 [26] ELLSWORTH D S, REICH P B. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest[J]. Oecologia,1993,96(2):169-178. doi: 10.1007/BF00317729 [27] 文军, 赵成章, 李群, 等. 黑河中游湿地胡杨蒸腾速率与叶性状的关联性分析[J]. 干旱区研究,2021,38(2):429-437.WEN J, ZHAO C Z, LI Q, et al. Studies of correlation between the transpiration rate and leaf traits of Populus euphratica in the middle reaches of the Heihe River wetland[J]. Arid Zone Research,2021,38(2):429-437. [28] 尚友贤, 满秀玲, 徐志鹏. 多年冻土区白桦次生林蒸腾特征及其对影响因子的响应[J]. 水土保持学报,2023,37(2):310-319.SHANG Y X, MAN X L, XU Z P. Transpiration characteristics and its response to influence factors of Betula platyphylla secondary forest in permafrost area[J]. Journal of Soil and Water Conservation,2023,37(2):310-319. [29] 刘思文, 艾也博, 刘艳红. 北京松山油松叶功能性状沿海拔梯度的变化及其环境解释[J]. 北京林业大学学报,2021,43(4):47-55.LIU S W, AI Y B, LIU Y H. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University,2021,43(4):47-55. [30] CHELLI S, OTTAVIANI G, TSAKALOA J L, et al. Intra-and inter-specific leaf trait responses of understorey species to changes in forest maturity[J]. Forest Ecology and Management,2022,506:119977. doi: 10.1016/j.foreco.2021.119977 [31] 王超, 卢杰, 周晨霓, 等. 藏东南川滇高山栎叶功能性状海拔分布特征[J]. 森林与环境学报,2021,41(4):366-372.WANG C, LU J, ZHOU C N, et al. Altitude distribution of leaf functional traits of Quercus aquifolioides in southeastern Tibet[J]. Journal of Forest and Environment,2021,41(4):366-372. [32] WRIGHT I J, REICH P B, CORNELISSEN J H, et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist,2005,166(2):485-496. doi: 10.1111/j.1469-8137.2005.01349.x [33] 刘茂秀, 史军辉, 王新英, 等. 塔河中游不同生境天然胡杨林木的光合与蒸腾特性[J]. 西北林学院学报,2021,36(6):9-15.LIU M X, SHI J H, WANG X Y, et al. Photosynthetic and transpiration characteristics of natural Populus euphratica forests in different habitats in the middle reaches of the Tahe River[J]. Journal of Northwest Forestry University,2021,36(6):9-15. [34] 李志军, 刘建平, 于军, 等. 胡杨、灰叶胡杨生物生态学特性调查[J]. 西北植物学报, 2003, 23(7): 236-240.LI Z J, LIU J P, YU J, et al. Investigation on the characteristics of biology and ecology of Populus euphratica and Populus pruinosa[J].Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(7): 1292-1296. [35] TENG K Q, LI J Z, LIU L, et al. Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem Ⅱ during PEG stress[J]. Acta Physiologiae Plantarum,2014,36(8):2219-2227. doi: 10.1007/s11738-014-1599-4 [36] STANDEN K M, BALTZER J L. Permafrost condition determines plant community composition and community-level foliar functional traits in a boreal peatland[J]. Ecology and Evolution,2021,11(15):10133-10146. doi: 10.1002/ece3.7818 [37] 钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报,2018,42(5):562-572. doi: 10.17521/cjpe.2017.0270ZHONG Q L, LIU L B, XU X, et al. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China[J]. Chinese Journal of Plant Ecology,2018,42(5):562-572. doi: 10.17521/cjpe.2017.0270 [38] 陈文, 王桔红, 马瑞君, 等. 粤东89种常见植物叶功能性状变异特征[J]. 生态学杂志,2016,35(8):2101-2109.CHEN W, WANG J H, MA R J, et al. Variance in leaf functional traits of 89 species from the eastern Guangdong of China[J]. Chinese Journal of Ecology,2016,35(8):2101-2109. [39] JUNG V, VIOLLE C, MONDY C P, et al. Intraspecific variability and trait-based community assembly[J]. Journal of Ecology,2010,98(5):1134-1140. doi: 10.1111/j.1365-2745.2010.01687.x [40] KLEM K, AČ A, HOLUB P, et al. Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties[J]. Environmental and Experimental Botany,2012,75:52-64. doi: 10.1016/j.envexpbot.2011.08.008 [41] MCGRODDY M E, DAUFRESNE T, HEDIN L O. Scaling of C: N: P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios[J]. Ecology,2004,85(9):2390-2401. doi: 10.1890/03-0351 [42] 丰叶, 王俊, 吴博文, 等. 固城湖浮游植物群落结构季节变化及其环境影响因子[J]. 生态与农村环境学报,2023,39(8):1042-1050.FENG Y, WANG J, WU B W, et al. Seasonal variation characteristics of phytoplankton community in Gucheng Lake and the influential environmental factors[J]. Journal of Ecology and Rural Environment,2023,39(8):1042-1050. [43] 冷芬, 杨在君, 吴一超, 等. 土壤pH值对何首乌生理及其光合特性和有效成分含量的影响[J]. 西北植物学报,2020,40(9):1566-1573.LENG F, YANG Z J, WU Y C, et al. Physiological and photosynthetic characteristics and active component contents of polygonum multiflorum thunb. under different soil pH values[J]. Acta Botanica Boreali-Occidentalia Sinica,2020,40(9):1566-1573. [44] 霍佳璇, 任梁, 潘莹萍, 等. 柴达木盆地荒漠植物功能性状及其对环境因子的响应[J]. 生态学报,2022,42(11):4494-4503.HUO J X, REN L, PAN Y P, et al. Functional traits of desert plants and their responses to environmental factors in Qaidam Basin, China[J]. Acta Ecologica Sinica,2022,42(11):4494-4503. [45] SEPASKHAH A R, TAFTEH A. Pedotransfer function for estimation of soil-specific surface area using soil fractal dimension of improved particle-size distribution[J]. Archives of Agronomy and Soil Science,2013,59(1):93-103. doi: 10.1080/03650340.2011.602632 [46] 栗忠飞, 高吉喜, 刘海江. 内蒙古多伦县4种植被对沙地土壤的修复效应[J]. 生态与农村环境学报,2017,33(1):15-22. doi: 10.11934/j.issn.1673-4831.2017.01.003LI Z F, GAO J X, LIU H J. Effects of vegetation remedying sandy soil in Duolun County of Inner Mongolia[J]. Journal of Ecology and Rural Environment,2017,33(1):15-22. doi: 10.11934/j.issn.1673-4831.2017.01.003 [47] 叶斌, 黄兰英, 李春华, 等. 太湖竺山湾缓冲带草林系统生长状态及土壤性质分析[J]. 环境工程技术学报,2015,5(5):411-417.YE B, HUANG L Y, LI C H, et al. Investigation on growth situation and soil property of grass-forest system in lake buffer zone of Zhushan Bay, Lake Taihu[J]. Journal of Environmental Engineering Technology,2015,5(5):411-417. ⊕