Study on the effect of microplastics on ice formation, melting and density
-
摘要:
随着海洋及淡水中塑料垃圾数量的急剧增加,以乌梁素海为代表的寒区淡水湖泊中微塑料含量增长显著,冰封期结冰会促进微塑料富集于冰盖中,为深入理解微塑料在寒区冰冻区的环境迁移特点,利用自制结冰装置试验模拟湖水结冰期、融冰期,揭示微塑料对冰厚度增长率、消减率以及冰密度的影响。结果表明,微塑料的赋存促进冰生长,并且冰厚度增长值随微塑料丰度增加呈现出先增加后减小的趋势;且微塑料阻碍冰层融化,随着微塑料丰度的增加阻碍作用愈加明显。通过对不同条件下冰样密度进行观测发现,冰密度的变化是微塑料丰度和结冰温度为主导、微塑料粒径存在微弱影响的一种共同作用,微塑料丰度和结冰温度会对冰的生消过程和冰密度的变化造成影响。
Abstract:With the dramatic increase in the amount of plastic waste in marine and freshwater environment, the microplastic content in freshwater lakes in cold regions, represented by Lake Ulansuhai, has increased significantly. Ice formation during the freezing period will promote the enrichment of microplastics in the ice cover. In order to deeply understand the environmental migration characteristics of microplastics in cold and frozen regions, a self-made icing device was used to simulate the freezing and thawing periods of lake water, to reveal the influence of microplastics on the growth rate and melting rate of ice thickness, and ice density. The results showed that the existence of microplastics could promote ice growth, and the ice thickness growth value showed a trend of increasing first and then decreasing with the increase of microplastic abundance. Microplastics played an obstructive role in the melting of the ice, and with the increase of microplastic abundance, the obstructive role was more obvious. Observations of the density of ice samples under different conditions revealed that the change in ice density was dominated by the abundance of microplastics and the freezing temperature, while the particle size of microplastics had a slight impact, which was a combined effect. The microplastics abundance and icing temperature affected the process of ice formation and melting, as well as changes in the ice density.
-
Key words:
- microplastics /
- indoor experiments /
- growth rate /
- melting rate /
- density
-
表 1 配水指标
Table 1. Water distribution indicators
指标 数值 总氮浓度/(mg/L) 1.80 总磷浓度/(mg/L) 0.128 化学需氧量/(mg/L) 48.00 盐度/10−3 14.00 悬浮物浓度/(mg/L) 2.00 表 2 试验设置
Table 2. Experiment setup
处理编号 微塑料粒径/ μm 微塑料丰度/(个/L) Ta-1 550 5 Ta-2 550 10 Ta-3 550 15 Ta-4 950 5 Ta-5 950 10 Ta-6 950 15 Ta-7 1 500 5 Ta-8 1 500 10 Ta-9 1 500 15 注:微塑料类型为PE。 -
[1] WEI H, WU L Z, LIU Z Q, et al. Meta-analysis reveals differential impacts of microplastics on soil biota[J]. Ecotoxicology and Environmental Safety,2022,230:113150. doi: 10.1016/j.ecoenv.2021.113150 [2] YUAN W K, CHRISTIE-OLEZA J A, XU E G, et al. Environmental fate of microplastics in the world's third-largest river: basin-wide investigation and microplastic community analysis[J]. Water Research,2022,210:118002. doi: 10.1016/j.watres.2021.118002 [3] 王成, 李哲, 魏健, 等. 水中微塑料来源、生态毒理效应及处理技术研究进展[J]. 环境工程技术学报,2023,13(5):1883-1892.WANG C, LI Z, WEI J, et al. Research progress on sources, ecotoxicological effect and treatment technology of microplastics in water[J]. Journal of Environmental Engineering Technology,2023,13(5):1883-1892. [4] von FRIESEN L W, GRANBERG M E, PAVLOVA O, et al. Summer sea ice melt and wastewater are important local sources of microlitter to Svalbard waters[J]. Environment International,2020,139:105511. doi: 10.1016/j.envint.2020.105511 [5] KELLY A, LANNUZEL D, RODEMANN T, et al. Microplastic contamination in East Antarctic Sea ice[J]. Marine Pollution Bulletin,2020,154:111130. doi: 10.1016/j.marpolbul.2020.111130 [6] 马令潇. 水库冰盖生长过程及其水质影响研究[D]. 大连: 大连理工大学, 2021. [7] 杨建林. 冻融过程中乌梁素海微塑料分布规律及其影响因素研究[D]. 包头: 内蒙古科技大学, 2021. [8] 王志超, 杨建林, 杨帆, 等. 乌梁素海冰盖中微塑料的分布特征及其与盐度、叶绿素a的响应关系[J]. 环境科学,2021,42(2):673-680.WANG Z C, YANG J L, YANG F, et al. Distribution characteristics of microplastics in ice sheets and its response to salinity and chlorophyll a in the Lake Wuliangsuhai[J]. Environmental Science,2021,42(2):673-680. [9] LIU Y, SHI X H, ZHANG S, et al. The spatial distribution and abundance of microplastics in lake waters and ice during ice-free and ice-covered periods[J]. Environmental Pollution,2023,323:121268. doi: 10.1016/j.envpol.2023.121268 [10] 全栋, 李畅游, 李超, 等. 冰封期黄河悬移质泥沙分布特性研究[J]. 泥沙研究,2018,43(2):21-26.QUAN D, LI C Y, LI C, et al. Study on distribution characteristics of suspended load in the Yellow River[J]. Journal of Sediment Research,2018,43(2):21-26. [11] 王志超, 窦雅娇, 康延秋, 等. 微塑料对结冰过程中环境因子迁移的影响[J]. 中国环境科学,2022,42(11):5369-5377. doi: 10.3969/j.issn.1000-6923.2022.11.043WANG Z C, DOU Y J, KANG Y Q, et al. Effect of microplastics on the transport of environmental factors during icing and the mechanism of action[J]. China Environmental Science,2022,42(11):5369-5377. doi: 10.3969/j.issn.1000-6923.2022.11.043 [12] 曹晓卫. 乌梁素海湖冰生消过程观测与模拟研究[D]. 大连: 大连理工大学, 2021. [13] TIMCO G, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology,2010,60(2):107. doi: 10.1016/j.coldregions.2009.10.003 [14] 王志超, 杨建林, 杨帆, 等. 春季乌梁素海水体微塑料分布特征及影响因素[J]. 农业环境科学学报,2021,40(10):2189-2197.WANG Z C, YANG J L, YANG F, et al. Spatial distribution characteristics and influencing factors of microplastics in Lake Ulansuhai during the spring[J]. Journal of Agro-Environment Science,2021,40(10):2189-2197. [15] EICKEN H, LANGE M A. Development and properties of sea ice in the coastal regime of the southeastern Weddell Sea[J]. Journal of Geophysical Research:Oceans,1989,94(C6):8193-8206. doi: 10.1029/JC094iC06p08193 [16] SCHMIDT S, MOSKAL W, de MORA S J, et al. Limnological properties of Antarctic ponds during winter freezing[J]. Antarctic Science,1991,3(4):379-388. doi: 10.1017/S0954102091000482 [17] WHARTON R, MCKAY C, CLOW G, et al. Perennial ice covers and their influence on Antarctic Lake ecosystems[J]. Physical and Biogeochemical Processes in Antarctic Lakes,1993,59:53-70. [18] ZHANG Y L, KANG S C, GAO T G. Microplastics have light-absorbing ability to enhance cryospheric melting[J]. Advances in Climate Change Research,2022,13(4):455-458. doi: 10.1016/j.accre.2022.06.005 [19] 刘慧慧. 超声波冰密度检测方法的机理研究[D]. 太原: 太原理工大学, 2016. [20] 闫利辉. 黄河内蒙段及其附属湖泊冰生消和冰物理调查[D]. 大连: 大连理工大学, 2017. [21] 徐梓竣. 乌梁素海湖冰单轴压缩强度试验研究[D]. 大连: 大连理工大学, 2018. [22] 蔡伟. 冰载荷作用下船舶结构弹塑性动力响应研究[D]. 武汉: 武汉理工大学, 2022. [23] 刘永岗, 王卓群, 尹训强, 等. 基于CESM1.2.2模拟的浪致混合对末次冰盛期和工业革命前气候的影响[J]. 海洋科学进展,2022,40(4):800-814.LIU Y G, WANG Z Q, YIN X Q, et al. The effect of wave-induced mixing on the climates during the last glacial maximum and pre-industrial based on CESM1.2.2 simulations[J]. Advances in Marine Science,2022,40(4):800-814. [24] BRYK T, HAYMET A D J. The ice/water interface: density–temperature phase diagram for the SPC/E model of liquid water[J]. Molecular Simulation,2004,30(2/3):131-135. [25] SALONEN K, LEPPÄRANTA M, VILJANEN M, et al. Perspectives in winter limnology: closing the annual cycle of freezing lakes[J]. Aquatic Ecology,2009,43(3):609-616. ⊗ doi: 10.1007/s10452-009-9278-z