留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微塑料对冰生消及密度的影响研究

王志超 康延秋 李卫平 窦雅娇 李嘉辰 杨文焕

王志超,康延秋,李卫平,等.微塑料对冰生消及密度的影响研究[J].环境工程技术学报,2024,14(3):750-757 doi: 10.12153/j.issn.1674-991X.20230700
引用本文: 王志超,康延秋,李卫平,等.微塑料对冰生消及密度的影响研究[J].环境工程技术学报,2024,14(3):750-757 doi: 10.12153/j.issn.1674-991X.20230700
WANG Z C,KANG Y Q,LI W P,et al.Study on the effect of microplastics on ice formation, melting and density[J].Journal of Environmental Engineering Technology,2024,14(3):750-757 doi: 10.12153/j.issn.1674-991X.20230700
Citation: WANG Z C,KANG Y Q,LI W P,et al.Study on the effect of microplastics on ice formation, melting and density[J].Journal of Environmental Engineering Technology,2024,14(3):750-757 doi: 10.12153/j.issn.1674-991X.20230700

微塑料对冰生消及密度的影响研究

doi: 10.12153/j.issn.1674-991X.20230700
基金项目: 内蒙古自治区自然科学基金项目(2023MS05016)
详细信息
    作者简介:

    王志超(1988—),男,副教授,博士,主要从事水土环境治理与修复研究,wzc5658@126.com

    通讯作者:

    李卫平(1973—),男,教授,博士,主要从事北方寒旱区湖泊水生态治理与修复研究,sjlwp@163.com

  • 中图分类号: X524

Study on the effect of microplastics on ice formation, melting and density

  • 摘要:

    随着海洋及淡水中塑料垃圾数量的急剧增加,以乌梁素海为代表的寒区淡水湖泊中微塑料含量增长显著,冰封期结冰会促进微塑料富集于冰盖中,为深入理解微塑料在寒区冰冻区的环境迁移特点,利用自制结冰装置试验模拟湖水结冰期、融冰期,揭示微塑料对冰厚度增长率、消减率以及冰密度的影响。结果表明,微塑料的赋存促进冰生长,并且冰厚度增长值随微塑料丰度增加呈现出先增加后减小的趋势;且微塑料阻碍冰层融化,随着微塑料丰度的增加阻碍作用愈加明显。通过对不同条件下冰样密度进行观测发现,冰密度的变化是微塑料丰度和结冰温度为主导、微塑料粒径存在微弱影响的一种共同作用,微塑料丰度和结冰温度会对冰的生消过程和冰密度的变化造成影响。

     

  • 图  1  结冰装置

    Figure  1.  Icing device

    图  2  冰厚度测量装置

    Figure  2.  Ice thickness measuring device

    图  3  各时期节点的冰厚度

    Figure  3.  Ice thickness value at each stage node

    图  4  不同特征微塑料下在各时间点生长与消减速率

    Figure  4.  Growth and melting rates under different characteristics of microplastics at various time points

    图  5  不同特征微塑料下冰密度的分布情况

    Figure  5.  Distribution of ice density under different characteristics of microplastics

    图  6  不同微塑料丰度下各温度间冰密度的显著性分析

    Figure  6.  Significance analysis of ice density between temperatures at different microplastic abundances

    图  7  −10 ℃时不同微塑料丰度下冰密度间显著性分析

    Figure  7.  Significance analysis of ice density at different microplastic abundances at −10 ℃

    表  1  配水指标

    Table  1.   Water distribution indicators

    指标 数值
    总氮浓度/(mg/L) 1.80
    总磷浓度/(mg/L) 0.128
    化学需氧量/(mg/L) 48.00
    盐度/10−3 14.00
    悬浮物浓度/(mg/L) 2.00
    下载: 导出CSV

    表  2  试验设置

    Table  2.   Experiment setup

    处理编号 微塑料粒径/ μm 微塑料丰度/(个/L)
    Ta-1 550 5
    Ta-2 550 10
    Ta-3 550 15
    Ta-4 950 5
    Ta-5 950 10
    Ta-6 950 15
    Ta-7 1 500 5
    Ta-8 1 500 10
    Ta-9 1 500 15
      注:微塑料类型为PE。
    下载: 导出CSV
  • [1] WEI H, WU L Z, LIU Z Q, et al. Meta-analysis reveals differential impacts of microplastics on soil biota[J]. Ecotoxicology and Environmental Safety,2022,230:113150. doi: 10.1016/j.ecoenv.2021.113150
    [2] YUAN W K, CHRISTIE-OLEZA J A, XU E G, et al. Environmental fate of microplastics in the world's third-largest river: basin-wide investigation and microplastic community analysis[J]. Water Research,2022,210:118002. doi: 10.1016/j.watres.2021.118002
    [3] 王成, 李哲, 魏健, 等. 水中微塑料来源、生态毒理效应及处理技术研究进展[J]. 环境工程技术学报,2023,13(5):1883-1892.

    WANG C, LI Z, WEI J, et al. Research progress on sources, ecotoxicological effect and treatment technology of microplastics in water[J]. Journal of Environmental Engineering Technology,2023,13(5):1883-1892.
    [4] von FRIESEN L W, GRANBERG M E, PAVLOVA O, et al. Summer sea ice melt and wastewater are important local sources of microlitter to Svalbard waters[J]. Environment International,2020,139:105511. doi: 10.1016/j.envint.2020.105511
    [5] KELLY A, LANNUZEL D, RODEMANN T, et al. Microplastic contamination in East Antarctic Sea ice[J]. Marine Pollution Bulletin,2020,154:111130. doi: 10.1016/j.marpolbul.2020.111130
    [6] 马令潇. 水库冰盖生长过程及其水质影响研究[D]. 大连: 大连理工大学, 2021.
    [7] 杨建林. 冻融过程中乌梁素海微塑料分布规律及其影响因素研究[D]. 包头: 内蒙古科技大学, 2021.
    [8] 王志超, 杨建林, 杨帆, 等. 乌梁素海冰盖中微塑料的分布特征及其与盐度、叶绿素a的响应关系[J]. 环境科学,2021,42(2):673-680.

    WANG Z C, YANG J L, YANG F, et al. Distribution characteristics of microplastics in ice sheets and its response to salinity and chlorophyll a in the Lake Wuliangsuhai[J]. Environmental Science,2021,42(2):673-680.
    [9] LIU Y, SHI X H, ZHANG S, et al. The spatial distribution and abundance of microplastics in lake waters and ice during ice-free and ice-covered periods[J]. Environmental Pollution,2023,323:121268. doi: 10.1016/j.envpol.2023.121268
    [10] 全栋, 李畅游, 李超, 等. 冰封期黄河悬移质泥沙分布特性研究[J]. 泥沙研究,2018,43(2):21-26.

    QUAN D, LI C Y, LI C, et al. Study on distribution characteristics of suspended load in the Yellow River[J]. Journal of Sediment Research,2018,43(2):21-26.
    [11] 王志超, 窦雅娇, 康延秋, 等. 微塑料对结冰过程中环境因子迁移的影响[J]. 中国环境科学,2022,42(11):5369-5377. doi: 10.3969/j.issn.1000-6923.2022.11.043

    WANG Z C, DOU Y J, KANG Y Q, et al. Effect of microplastics on the transport of environmental factors during icing and the mechanism of action[J]. China Environmental Science,2022,42(11):5369-5377. doi: 10.3969/j.issn.1000-6923.2022.11.043
    [12] 曹晓卫. 乌梁素海湖冰生消过程观测与模拟研究[D]. 大连: 大连理工大学, 2021.
    [13] TIMCO G, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology,2010,60(2):107. doi: 10.1016/j.coldregions.2009.10.003
    [14] 王志超, 杨建林, 杨帆, 等. 春季乌梁素海水体微塑料分布特征及影响因素[J]. 农业环境科学学报,2021,40(10):2189-2197.

    WANG Z C, YANG J L, YANG F, et al. Spatial distribution characteristics and influencing factors of microplastics in Lake Ulansuhai during the spring[J]. Journal of Agro-Environment Science,2021,40(10):2189-2197.
    [15] EICKEN H, LANGE M A. Development and properties of sea ice in the coastal regime of the southeastern Weddell Sea[J]. Journal of Geophysical Research:Oceans,1989,94(C6):8193-8206. doi: 10.1029/JC094iC06p08193
    [16] SCHMIDT S, MOSKAL W, de MORA S J, et al. Limnological properties of Antarctic ponds during winter freezing[J]. Antarctic Science,1991,3(4):379-388. doi: 10.1017/S0954102091000482
    [17] WHARTON R, MCKAY C, CLOW G, et al. Perennial ice covers and their influence on Antarctic Lake ecosystems[J]. Physical and Biogeochemical Processes in Antarctic Lakes,1993,59:53-70.
    [18] ZHANG Y L, KANG S C, GAO T G. Microplastics have light-absorbing ability to enhance cryospheric melting[J]. Advances in Climate Change Research,2022,13(4):455-458. doi: 10.1016/j.accre.2022.06.005
    [19] 刘慧慧. 超声波冰密度检测方法的机理研究[D]. 太原: 太原理工大学, 2016.
    [20] 闫利辉. 黄河内蒙段及其附属湖泊冰生消和冰物理调查[D]. 大连: 大连理工大学, 2017.
    [21] 徐梓竣. 乌梁素海湖冰单轴压缩强度试验研究[D]. 大连: 大连理工大学, 2018.
    [22] 蔡伟. 冰载荷作用下船舶结构弹塑性动力响应研究[D]. 武汉: 武汉理工大学, 2022.
    [23] 刘永岗, 王卓群, 尹训强, 等. 基于CESM1.2.2模拟的浪致混合对末次冰盛期和工业革命前气候的影响[J]. 海洋科学进展,2022,40(4):800-814.

    LIU Y G, WANG Z Q, YIN X Q, et al. The effect of wave-induced mixing on the climates during the last glacial maximum and pre-industrial based on CESM1.2.2 simulations[J]. Advances in Marine Science,2022,40(4):800-814.
    [24] BRYK T, HAYMET A D J. The ice/water interface: density–temperature phase diagram for the SPC/E model of liquid water[J]. Molecular Simulation,2004,30(2/3):131-135.
    [25] SALONEN K, LEPPÄRANTA M, VILJANEN M, et al. Perspectives in winter limnology: closing the annual cycle of freezing lakes[J]. Aquatic Ecology,2009,43(3):609-616. ⊗ doi: 10.1007/s10452-009-9278-z
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  69
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 录用日期:  2024-02-05
  • 修回日期:  2023-12-22

目录

    /

    返回文章
    返回