Measurement of total hydrogen content in hydrogen nanobubble water by headspace gas chromatography
-
摘要:
氢气纳米气泡在环境修复、能源燃料和医疗健康等领域具有广泛的应用前景。目前氢气纳米气泡水中总氢含量的测定方法还相对有限,无法准确评定相关发生设备的性能。顶空气相色谱法通过加热使顶空瓶内体系达到气液平衡的方式将水样中的氢气转移到气相中,利用气相色谱仪来测定氢气纳米气泡水中的总氢含量。结果表明:样品的最佳平衡温度为50 ℃,平衡时间为15 min。通过对氢气纳米气泡水中氢气纳米气泡的数量浓度及粒径分布的检测,证实了该顶空气相色谱法适用于大多数纳米气泡产生方式所制备的氢气纳米气泡水体系,即氢气纳米气泡数量浓度范围为106~108个/mL,平均粒径范围为100~300 nm。当氢气纳米气泡数量浓度为6.7×106~3.8×108 个/mL时,对应测得的氢含量为0~3.12 mg/L,氢气纳米气泡数量浓度与对应氢含量变化一致,且能在2 min内完成检测。该方法简单高效,可以满足不同数量浓度氢气纳米气泡水的测试要求,为测定氢气纳米气泡水中总氢含量提供了可行的选择,有助于进一步研究氢气纳米气泡在各领域的重要应用并进行发生设备的性能评价。
-
关键词:
- 氢气 /
- 氢气纳米气泡(HNBs) /
- 顶空气相色谱法 /
- 总氢含量
Abstract:Hydrogen nanobubbles have shown great potential in various applications such as environmental remediation, energy fuel production, and medical applications. However, accurately determining the total hydrogen content in hydrogen nanobubble water has been a challenge, which affects the evaluation of nanobubble generator performance. To address this issue, a method using headspace gas chromatography was developed, which transferred hydrogen from the liquid phase to the gas phase by heating the headspace bottle to achieve gas-liquid equilibrium, and then determined the total hydrogen content in hydrogen nanobubble water using gas chromatography. The results show that the optimal equilibrium condition for sample pretreatment is 50 ℃ for 15 min. It has been confirmed that the headspace gas chromatography method is suitable for analyzing a wide range of hydrogen nanobubble water systems (with number concentrations ranging from 106 to 108 mL−1 and average particle sizes ranging from 100 to 300 nm) prepared by most nanobubble generation methods, by detecting both number concentration and particle size distribution of hydrogen nanobubbles in hydrogen nanobubble water. When the number concentrations of hydrogen nanobubbles are within the range of 6.7×106-3.8×108 mL−1, the corresponding measured hydrogen contents fall between 0-3.12 mg/L. The changes in number concentrations of hydrogen nanobubbles are consistent with the corresponding hydrogen contents, and the detection process can be completed within 2 minutes. This method is simple and efficient, and can fulfill the test requirements regarding different number concentrations of hydrogen nanobubble water, providing a feasible option for quantifying the total hydrogen content in hydrogen nanobubble water. It facilitates further research on their significant applications of hydrogen nanobubbles in various fields and enables the evaluation of nanobubble generator performance.
-
编者按:微纳米气泡技术因其绿色、低碳和高效等特点近年来在天然水体修复、工业污水和尾水处理等方面展现出巨大的应用发展潜力。本刊特邀张立娟研究员、张现仁教授和李攀副教授作为专栏执行主编,策划“微纳米气泡研究与应用”特色研究专栏。该专栏从微纳米气泡的检测到近年来微纳米气泡在处理高盐废水、饮用水污染的效能与机制以及在膜污染和油气田废水的应用等方面进行了总结,为广大科研人员和企业提供微纳米气泡相关的研究和应用进展,有助于该领域的快速发展和助力打好碧水保卫战。 张立娟,研究员,中国科学院上海高等研究院,博士生导师。现任中国颗粒学会微纳气泡专业委员会秘书长和全国微细气泡技术标准化技术委员会副秘书长等。主要研究方向是基于第三代先进同步辐射技术和纳米成像技术研究纳米气泡的物理性质及其在绿色清洗、环境、生物等方面的重要应用。发表SCI论文100余篇,其中以第一或通讯作者在Journal of the American Chemical Society和Environmental Science & Technology等发表纳米气泡相关论文80余篇。2020年获中国颗粒学会自然科学奖二等奖,2021年获陕西高等学校科技技术奖二等奖,2017年入选嘉定区第十三批高层次创新创业和急需紧缺人才等。主持1项和参与6项微细气泡国际标准的编写工作。 张现仁,教授,北京化工大学,博士生导师。现任中国颗粒学会常务理事、中国颗粒学会微纳气泡专业委员会副主任、全国专业标准化技术委员会委员等。发表SCI论文180余篇。研究方向为纳微液滴和气泡的行为、热力学基础理论和计算流体力学等。 李攀,副教授,同济大学,博士生导师。现任中国颗粒学会微纳气泡专业委员会副主任委员。近20年围绕微纳米气泡技术开展了气泡发生和应用技术研究,在水环境生态修复、水污染治理和绿色清洗技术上取得了一系列成果,并成功应用于工程实践。参编4本微纳米气泡科技书籍,主持2项微纳米气泡ISO国际标准和3项国家标准制定。开发的纳米气泡发生技术荣获2020年上海市科技进步奖一等奖(排名第6)。 表 1 不同HNBs水体系的平衡温度和平衡时间
Table 1. Test conditions for different number concentrations of HNBs
HNBs数量浓度/
(个/mL)HNBs平均
粒径/nm平衡温
度/℃平衡时间/
min6.7×106 247.2 50 10 6.4×107 270.6 50 10 3.8×108 144.6 50 10 表 2 不同仪器和样品的测试条件对比
Table 2. Comparison of test conditions for different instruments and samples
表 3 理论H2含量与顶空气相色谱法实际测得H2含量对比
Table 3. Comparison between theoretical H2 contents and actual H2 contents measured by headspace gas chromatography
H2含量理
论值/(mg/L)H2含量测定值/(mg/L) 加标回收
率/%第1次 第2次 第3次 平均值 0.160 0.152 0.166 0.142 0.153 95.833 0.802 0.706 0.737 0.759 0.734 91.521 1.603 1.678 1.439 1.578 1.565 97.629 -
[1] ZHOU L M, WANG X Y, SHIN H J, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society,2020,142(12):5583-5593. doi: 10.1021/jacs.9b11303 [2] 黄青, 刘爱荣, 张立娟. 微纳米气泡特性及在土壤环境改善中的应用[J]. 环境工程技术学报,2022,12(4):1324-1332.HUANG Q, LIU A R, ZHANG L J. Characteristics of micro-nanobubbles and their applications in soil environment improvement[J]. Journal of Environmental Engineering Technology,2022,12(4):1324-1332. [3] GADEA E D, MOLINERO V, SCHERLIS D A. Nanobubble stability and formation on solid-liquid interfaces in open environments[J]. Nano Letters,2023,23(15):7206-7212. doi: 10.1021/acs.nanolett.3c02261 [4] BABU K S, AMAMCHARLA J K. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective[J]. Critical Reviews in Food Science and Nutrition,2023,63(28):9262-9281. doi: 10.1080/10408398.2022.2067119 [5] CHAE S H, KIM M S, KIM J H, et al. Nanobubble reactivity: evaluating hydroxyl radical generation (or lack thereof) under ambient conditions[J]. ACS ES& T Engineering,2023,3(10):1504-1510. [6] 张亮, 周姝岑, 李攀, 等. 电絮凝-微纳米气泡臭氧氧化工艺处理高盐印染废水的研究[J]. 环境工程技术学报,2023,13(2):639-647.ZHANG L, ZHOU S C, LI P, et al. Study on treatment of high-salt printing and dyeing wastewater by electroflocculation-micro-nano-bubble ozone oxidation process[J]. Journal of Environmental Engineering Technology,2023,13(2):639-647. [7] 方衡鑫, 胡钧, 张立娟. 固液界面纳米气层研究进展[J]. 环境工程技术学报,2022,12(4):1298-1309.FANG H X, HU J, ZHANG L J. Research advances in nano gas layers at the solid-liquid interface[J]. Journal of Environmental Engineering Technology,2022,12(4):1298-1309. [8] CHUENCHART W, KARKI R, SHITANAKA T, et al. Nanobubble technology in anaerobic digestion: a review[J]. Bioresource Technology,2021,329:124916. doi: 10.1016/j.biortech.2021.124916 [9] DYETT B P, ZHANG X H. Accelerated formation of H2 nanobubbles from a surface nanodroplet reaction[J]. ACS Nano,2020,14(9):10944-10953. doi: 10.1021/acsnano.0c03059 [10] 张昭, 魏娅楠, 仪杨, 等. 水相中氢气浓度检测方法的建立[J]. 生物技术进展,2020,10(2):158-163.ZHANG Z, WEI Y N, YI Y, et al. Establishment of detection method of hydrogen concentration in aqueous phase[J]. Current Biotechnology,2020,10(2):158-163. [11] HE C, SONG H, LIU L, et al. Enhancement of methane production by anaerobic digestion of corn straw with hydrogen-nanobubble water[J]. Bioresource Technology,2022,344:126220. doi: 10.1016/j.biortech.2021.126220 [12] LI L N, WANG J, JIANG K, et al. Preharvest application of hydrogen nanobubble water enhances strawberry flavor and consumer preferences[J]. Food Chemistry,2022,377:131953. doi: 10.1016/j.foodchem.2021.131953 [13] ZHANG Y, FAN W H, LI X M, et al. Enhanced removal of free radicals by aqueous hydrogen nanobubbles and their role in oxidative stress[J]. Environmental Science & Technology,2022,56(21):15096-15107. [14] LIU S, LI J Y, OSHITA S, et al. Formation of a hydrogen radical in hydrogen nanobubble water and its effect on copper toxicity in Chlorella[J]. ACS Sustainable Chemistry & Engineering,2021,9(33):11100-11109. [15] KIM W K, HONG G, KIM Y H, et al. Mechanical strength and hydration characteristics of cement mixture with highly concentrated hydrogen nanobubble water[J]. Materials,2021,14(11):2735. doi: 10.3390/ma14112735 [16] FAN W H, ZHANG Y, LIU S, et al. Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water[J]. Journal of Hazardous Materials,2020,389:122155. doi: 10.1016/j.jhazmat.2020.122155 [17] FAN Y J, LEI Z F, GUO Z T, et al. Enhanced solubilization of solid organics and methane production by anaerobic digestion of swine manure under nano-bubble water addition[J]. Bioresource Technology,2020,299:122512. doi: 10.1016/j.biortech.2019.122512 [18] XIAO L, MIWA N. Hydrogen nano-bubble water suppresses ROS generation, adipogenesis, and interleukin-6 secretion in hydrogen-peroxide- or PMA-stimulated adipocytes and three-dimensional subcutaneous adipose equivalents[J]. Cells,2021,10(3):626. doi: 10.3390/cells10030626 [19] 龙庆云, 杨品, 韦桂欢. 顶空气相色谱法测定富氢水中的氢气[J]. 化学分析计量,2017,26(5):71-73.LONG Q Y, YANG P, WEI G H. Determination of hydrogen in hydrogen-rich water by headspace gas chromatography[J]. Chemical Analysis and Meterage,2017,26(5):71-73. [20] SEO T, KUROKAWA R, SATO B. A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum[J]. Medical Gas Research,2012,2:1. doi: 10.1186/2045-9912-2-1 [21] LeBARON T W, SHARPE R. ORP should not be used to estimate or compare concentrations of aqueous H2: an in silico analysis and narrative synopsis[J]. Frontiers in Food Science and Technology,2022,2:1007001. doi: 10.3389/frfst.2022.1007001 [22] DEAN J A. 兰氏化学手册[M].2版. 魏俊发,译.北京: 科学出版社, 2003. [23] XU W, WANG Y, HUANG Q, et al. The generation and stability of bulk nanobubbles by compression-decompression method: the role of dissolved gas[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,657:130488. doi: 10.1016/j.colsurfa.2022.130488 [24] 刘丽君, 张秀忠, 陆坤明. 水质分析中的检出限及其确定方法[J]. 净水技术,2003,22(1):37-39. doi: 10.3969/j.issn.1009-0177.2003.01.013LIU L J, ZHANG X Z, LU K M. Determination of the detecion limits of water quality analysis[J]. Water Purification Technology,2003,22(1):37-39. doi: 10.3969/j.issn.1009-0177.2003.01.013 [25] 姜林, 张丽娜, 钟茂生, 等. 统计方法在污染场地修复验收评估中的应用[J]. 环境科学研究,2013,26(8):873-878.JIANG L, ZHANG L N, ZHONG M S, et al. Case application of statistical analysis in remediation validation of contaminated sites[J]. Research of Environmental Sciences,2013,26(8):873-878. [26] 黄建军, 顾平, 陆彩霞. 气相色谱法测定水相中微量氢气[J]. 分析试验室,2008,27(增刊2):369-372. [27] 刘伯言, 贾修滨, 薛俊莉, 等. 顶空-气相色谱法与氢气微电极法用于富氢水中氢气含量的检测[J]. 食品工业科技,2023,44(2):352-357.LIU B Y, JIA X B, XUE J L, et al. Determination of hydrogen concentration in hydrogen-rich water by headspace gas chromatography and hydrogen microelectrode[J]. Science and Technology of Food Industry,2023,44(2):352-357. [28] LIU S, OSHITA S, THUYET D Q, et al. Antioxidant activity of hydrogen nanobubbles in water with different reactive oxygen species both in vivo and in vitro[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2018,34(39):11878-11885. ◇ doi: 10.1021/acs.langmuir.8b02440