Reliability analysis of handheld XRF application in soil investigation and remediation projects
-
摘要:
为确定手持式X射线荧光光谱仪(XRF)测量精度和准确度是否能够满足土壤环境快速检测要求,以山东省济宁市某地块土壤污染状况调查项目为背景,分别采用XRF快速检测仪检测和实验室检测方法对浅层土层(0.2~0.5 m)和深层土层(1.5~2.0 m)样品中砷(As)、铜(Cu)、铅(Pb)、锌(Zn)和镍(Ni)5种元素浓度进行检测。结果表明:浅层土层重金属As的XRF检测值普遍高于实验室检测值,Cu、Pb、Zn、Ni的XRF检测值普遍低于实验室检测值,误差普遍在±30%以内;浅层土层的重金属元素XRF检测值与实验室检测值普遍相对偏差(RD为−33.82%~23.53%)及总体相对偏差标准差(6.79~19.52)小于深层土层(分别为−30.26%~98.36%、9.53~49.77),相对偏差的离散程度小于深层土层;浅层土层的重金属的决定系数(R2为0.776 2~0.954 9)普遍高于深层土层(R2为0.776 2~0.954 9),相关性高于深层土层。野外使用XRF对土壤样品中重金属进行检测时,所取的土壤样品尽量避免大颗粒,对样品待测面进行压实、压平处理,对于含水率高的样品应适当进行干燥处理,以降低检测误差。虽然手持式XRF检测存在一定误差,但在土壤污染状况调查项目中可以较好地反映土壤元素浓度范围,具有较高的可靠性,可以满足项目土壤快速检测需求。
-
关键词:
- X射线荧光光谱仪(XRF) /
- 重金属 /
- 土壤污染状况 /
- 快速检测 /
- 可靠性
Abstract:In order to determine whether the measurement precision and accuracy of the handheld X-ray fluorescence spectrometer (XRF) can meet the requirements of rapid detection of soil environment, in the context of one soil pollution survey project in a certain plot of Jining City, Shandong Province, the concentrations of arsenic (As), copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) were detected by XRF rapid detection and laboratory methods. The samples were collected from shallow soil layers (0.2-0.5 m) and deep soil layers (1.5-2.0 m). The results indicated that for shallow soil layers, XRF measurements of heavy metal As consistently exceeded laboratory data, while XRF measurements of heavy metals Cu, Pb, Zn, and Ni were lower within an error of ±30% compared to laboratory measurements. The relative deviations (RD) and overall relative deviation standard deviations of heavy metal elements in shallow soil layers (RD: −33.82%-23.53%, standard deviation: 6.79-19.52) were generally smaller than those in deep soil layers (RD: −30.26%-98.36%, standard deviation: 9.53-49.77), and the dispersion degree of relative deviation in shallow soil layers was smaller than that of deep soil layers. Moreover, the determination coefficients (R2) for heavy metals in shallow soil layers (R2: 0.7762-0.9549) were consistently higher than those in deep soil layers (R2: 0.7762-0.9549), indicating a stronger correlation. When XRF was employed for in-field detection of heavy metals in soil samples, it was recommended to avoid large particles in the samples, compact and flatten the testing surface and, for samples with high moisture content, carry out appropriate drying to minimize detection errors. Despite the inherent limitations of handheld XRF detection, the method demonstrates acceptable accuracy and reliability in reflecting the concentration range of soil elements in soil pollution survey projects, meeting the rapid detection requirements of such projects.
-
表 1 XRF检测值与实验室检测值相对偏差标准差
Table 1. Standard deviation of relative deviation between XRF detection values and laboratory detection values
重金属 浅层土层 深层土层 RD/% 相对偏差
标准差RD/% 相对偏差
标准差As −33.82~31.17 19.52 −30.26~98.36 49.77 Cu −29.63~0.00 9.93 −25.81~5.56 9.53 Pb −23.08~23.53 16.19 −27.59~25.00 19.69 Zn −22.22~0.00 6.79 −20.97~16.36 9.95 Ni1) −38.27~−10.53 11.13 −38.78~12.50 15.10 1) Ni在浅层土层仅3#、10#和11#样本及深层土层16#、21#和23#样本相对偏差下限低于−30%。 表 2 重金属元素的XRF检测值与实验室检测值拟合结果
Table 2. Fitting results of XRF detection values and laboratory detection values of heavy metal elements
重金属 浅层土层 深层土层 线性方程 R2 相关性 准确度 线性方程 R2 相关性 准确度 As y=1.051 6x 0.7762 强 筛选性 y=1.101 7x 0.542 9 中等 定性筛选性 Cu y=0.747 2x 0.926 2 极强 确定性 y=0.794 6x 0.955 3 极强 确定性 Pb y=0.898 2x 0.863 6 极强 确定性 y=0.908 5x 0.670 4 强 定性筛选性 Zn y=0.877 6x 0.954 9 极强 确定性 y=0.944 8x 0.929 7 极强 确定性 Ni y=0.673 1x 0.916 9 极强 确定性 y=0.760 7x 0.695 5 强 定性筛选性 注:x为实验室检测值、y为XRF检测值;浅层土层样本数为11,深层土层样本数为12。 表 3 实验室检测值与XRF检测值数据偏差统计
Table 3. Statistical table for deviation between laboratory test values and XRF data
重金属 浅层土层 深层土层 偏差绝对值
最大值均方根误差 偏差绝对值
最大值均方根误差 As 2.4 1.44 6.3 3.33 Cu 13.0 2.19 11.0 1.89 Pb 6.0 3.41 9.0 4.07 Zn 18.0 7.73 13 6.01 Ni 31.0 10.24 19.0 4.76 -
[1] 邓飞, 朱梦杰, 郁斯贻, 等. 便携式XRF在土壤重金属监测中的应用研究综述[J]. 科技视界,2019(22):85-87.DENG F, ZHU M J, YU S Y, et al. Review on the application of portable X-ray fluorescence spectrometry in soil heavy metal monitoring[J]. Science & Technology Vision,2019(22):85-87. [2] DUNNINGTON D W, SPOONER I S, MALLORY M L, et al. Evaluating the utility of elemental measurements obtained from factory-calibrated field-portable X-ray fluorescence units for aquatic sediments[J]. Environmental Pollution,2019,249:45-53. doi: 10.1016/j.envpol.2019.03.001 [3] WEINDORF D C, PAULETTE L, MAN T. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania[J]. Environmental Pollution,2013,182:92-100. doi: 10.1016/j.envpol.2013.07.008 [4] WASTOWSKI A D, ROSA G M, CHERUBIN M R, et al. Characterization of chemical elements in soil submitted to different systems use and management by energy dispersive X-ray fluorescence spectrometry (EDXRF)[J]. Quim Nova,2010,33:1449-1452. doi: 10.1590/S0100-40422010000700005 [5] 冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析,2014,34(11):3113-3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06RAN J, WANG D J, WANG C, et al. Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis[J]. Spectroscopy and Spectral Analysis,2014,34(11):3113-3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06 [6] 张思冲, 周晓聪, 叶华香, 等. X射线荧光光谱法测定哈尔滨城郊菜地土壤重金属[J]. 中国农学通报,2009,25(13):230-233.ZHANG S C, ZHOU X C, YE H X, et al. The determination of heavy metals in vegetable soil by X-ray fluorescence spectrometry in suburb of Harbin[J]. Chinese Agricultural Science Bulletin,2009,25(13):230-233. [7] 邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤,2015,47(3):589-595.KUANG R X, HU W Y, HE Y, et al. Application of portable X-ray fluorescence(PXRF) for rapid analysis of heavy metals in agricultural soils around mining area[J]. Soils,2015,47(3):589-595. [8] 李燕, 魏雨露, 夏龙飞. 便携式X荧光光谱仪在场地重金属污染调查中的应用研究[C]//《环境工程》2019年全国学术年会论文集(下册). 北京: 《环境工程》编委会, 2019: 835-840. [9] 曹发明. XRF分析技术在土壤重金属检测中的应用研究[D]. 成都: 成都理工大学, 2014. [10] US EPA. Environmental technology verification report field portable X-ray fluorescence analyzer [R/OL]. 1998. https://nepis.epa.gov/Adobe/PDF/30003LR0.pdf. [11] The British Standards Institution. Soil quality. screening soils for selected elements by energy-dispersive X-ray fluorescence spectrometry using a handheld or portable instrument(BS ISO 13196)[S]. BSI Standards Limited, 2013. [12] US EPA. Fied portable X-ray fluorescence spectrometry for the determination of elements concentrations in soil and sediment[S]. 2007. [13] 傅赵聪, 王翀, 吴春发, 等. HDXRF法农田土壤镉测定结果准确度评价与精准校正模型构建[J]. 土壤,2023,55(4):829-837.FU Z C, WANG C, WU C F, et al. Accuracy evaluation and precision correction model construction of cadmium determination in farmland soil by HDXRF method[J]. Soils,2023,55(4):829-837. [14] 陈云, 应蓉蓉, 孔令雅, 等. 手持式X射线荧光光谱快速测定仪的实践应用评价及建议[J]. 土壤,2022,54(3):586-593.CHEN Y, YING R R, KONG L Y, et al. Assessment and suggestions of application of field portable XRF in investigating contaminated sites[J]. Soils,2022,54(3):586-593. [15] KILBRIDE C, POOLE J, HUTCHINGS T R. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses[J]. Environmental Pollution,2006,143(1):16-23. doi: 10.1016/j.envpol.2005.11.013 [16] 高新华, 宋武元, 邓赛文, 等. 实用X射线光谱分析[M]. 北京: 化学工业出版社, 2017. [17] TOWETT E K, SHEPHERD K D, CADISCH G. Quantification of total element concentrations in soils using total X-ray fluorescence spectroscopy (TXRF)[J]. Science of the Total Environment,2013,463/464:374-388. doi: 10.1016/j.scitotenv.2013.05.068 [18] 柳伟, 许伟, 孙东, 等. 便携式XRF仪现场快速测定土壤中Pb的可行性研究[J]. 安徽农业科学,2017,45(33):115-117. doi: 10.3969/j.issn.0517-6611.2017.33.038LIU W, XU W, SUN D, et al. Discussion on feasibility of rapid testing of Pb in soil by portable XRF analyzer in field[J]. Journal of Anhui Agricultural Sciences,2017,45(33):115-117. doi: 10.3969/j.issn.0517-6611.2017.33.038 [19] 彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报,2018,37(7):1386-1395. doi: 10.11654/jaes.2018-0568PENG H L, YANG Z S, ZHAO J, et al. Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils[J]. Journal of Agro-Environment Science,2018,37(7):1386-1395. doi: 10.11654/jaes.2018-0568 [20] 陆安祥, 王纪华, 潘立刚, 等. 便携式X射线荧光光谱测定土壤中Cr, Cu, Zn, Pb和As的研究[J]. 光谱学与光谱分析,2010,30(10):2848-2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05LU A X, WANG J H, PAN L G, et al. Determination of Cr, Cu, Zn, Pb and As in soil by field portable X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis,2010,30(10):2848-2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05 [21] 杨桂兰, 商照聪, 李良君, 等. 基于均匀设计的土壤重金属PXRF检测方法优化研究[J]. 浙江农业学报,2016,28(12):2123-2129. doi: 10.3969/j.issn.1004-1524.2016.12.23YANG G L, SHANG Z C, LI L J, et al. Application of uniform design method in optimizing PXRF determination methods of heavy metals in soil[J]. Acta Agriculturae Zhejiangensis,2016,28(12):2123-2129. doi: 10.3969/j.issn.1004-1524.2016.12.23 [22] 钱建平, 吴高海, 陈宏毅. 便携式X射线荧光光谱仪应用条件试验及效果[J]. 物探与化探,2010,34(4):497-502.QIAN J P, WU G H, CHEN H Y. Experiments on the application conditions of portable xrf analyzer and its prospecting results[J]. Geophysical and Geochemical Exploration,2010,34(4):497-502. [23] 王娜, 文方, 孔利锋, 等. 便携式XRF仪在土壤重金属检测方面的应用研究[J]. 环境保护与循环经济,2021,41(8):69-73. [24] SHAND C A, WENDLER R. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter[J]. Journal of Geochemical Exploration,2014,143:31-42. doi: 10.1016/j.gexplo.2014.03.005 [25] 李阳, 李垒, 韩晓霞, 等. 便携式X-荧光分析土壤的准确度和质量控制研究[J]. 环境科学与管理,2015,40(9):146-149. doi: 10.3969/j.issn.1673-1212.2015.09.036LI Y, LI L, HAN X X, et al. Accuracy and quality control of soil measurement with portable X-fluorescence[J]. Environmental Science and Management,2015,40(9):146-149. ⊗ doi: 10.3969/j.issn.1673-1212.2015.09.036