Heavy metal health risks and source analysis of temple dust in typical cities of Henan Province
-
摘要:
以新乡市贾湾泰山庙为研究对象,测定并分析寺庙地表灰尘中8种重金属元素(Hg、As、Cr、Ni、Cu、Zn、Cd、Pb)浓度,进行健康风险评估与重金属污染源解析。结果表明:寺庙地表灰尘中除As外的7种重金属元素存在空间变异情况,浓度超过豫境平原南区土壤环境背景值。各采集点位Cu浓度土壤背景值超标率达91.03%,Ni平均浓度超标率达151.1%。地表灰尘重金属对儿童与成人的潜在致癌、非致癌风险均低于标准值,Cr和Pb为主要非致癌因子。地表灰尘中重金属对儿童健康风险高于成人,手—口摄入为主要的接触途径。重金属健康风险指数随距炉心梯度的增加先增后减,最高值普遍位于20 m梯度处。正定矩阵因子分析表明,地表灰尘中Hg和Pb主要来自建筑油漆污染,Cr、Cu、Ni、Zn主要来自寺庙燃香污染,Cd和As主要来自农业种植和畜牧活动。寺庙燃香污染源作为主要污染贡献源占比达40.96%,农业畜牧污染源占比达37.40%,寺庙建筑污染源占比达21.64%。
-
关键词:
- 寺庙 /
- 重金属污染 /
- 健康风险 /
- 源解析 /
- 正定矩阵因子分析(PMF)
Abstract:The study focuses on Tai Shan Temple in Jiawan, Xinxiang City, investigating the concentrations of eight heavy metal elements (Hg, As, Cr, Ni, Cu, Zn, Cd, Pb) in surface dust and conducting health risk assessment and source apportionment of heavy metal pollution. Results reveal spatial variability in the concentrations of seven heavy metal elements (excluding As) in temple surface dust, exceeding the soil environmental background values of the southern Yu Plain. The exceedance rate of Cu concentrations over soil background values at each sampling point reaches 91.03%, with Ni showing an average exceedance rate of 151.1%. Potential carcinogenic and non-carcinogenic risks posed by heavy metals in surface dust to children and adults were found to be below standard values, with Cr and Pb identified as the primary non-carcinogenic factors. Children were found to face higher health risks from heavy metals in surface dust compared to adults, primarily through the hand-to-mouth ingestion pathway. The health risk index of heavy metals exhibited an initial increase followed by a decrease with increasing distance from the furnace core, with peak values generally observed at a gradient of 20 meters. Matrix factor analysis indicated that Hg and Pb in surface dust mainly originated from architectural paint pollution, while Cr, Cu, Ni, and Zn primarily originated from temple incense pollution, and Cd and As were predominantly sourced from agricultural and livestock activities. Temple incense pollution contributed significantly to the pollution sources, accounting for 40.96%, followed by agricultural and livestock pollution at 37.40%, and temple construction pollution at 21.64%.
-
Key words:
- temples /
- heavy metal pollution /
- health risk /
- source analysis /
- positive matrix factorization (PMF)
-
表 1 暴露参数的取值
Table 1. Value of exposure parameters
表 2 重金属不同暴露途径的参考剂量值(RfD)与致癌斜率因子值(SF)
Table 2. Reference dose (RfD) and carcer slope factor (SF) of different exposure routes of heavy metals
重金属 RfDing/
〔mg/(kg∙d)〕RfDinh/
〔mg/(kg∙d)〕RfDderm/
〔mg/(kg∙d)〕SFinh/
〔(kg∙d)/mg〕Pb 3.50$ \times $10−3 3.52$ \times $10−3 5.25$ \times $10−4 Cd 1.00$ \times $10−3 1.00$ \times $10−3 1.00$ \times $10−5 6.3 Cr 3.00$ \times $10−3 2.86$ \times $10−5 6.00$ \times $10−5 42 Zn 0.3 0.3 0.06 Cu 4.00$ \times $10−2 4.02$ \times $10−2 1.20$ \times $10−2 表 3 地表灰尘重金属浓度描述性统计特征
Table 3. Descriptive statistical characteristics of heavy metal concentration in surface dust of the study area
重金属 浓度/(mg/kg) CV/% 豫境平原南区
土壤背景值[33]/(mg/kg)GB/T 15618—1995中
土壤二级标准值[32]/(mg/kg)最大值 最小值 中值 算数平均值 标准差 Hg 3.30 0.27 0.58 0.70 0.63 90.87 0.066 ≤1 As 2.22 0.80 1.69 1.57 0.45 28.56 4.11 ≤25 Cr 262.56 87.95 129.37 149.88 50.14 33.45 56.72 ≤350 Ni 179.55 18.22 52.14 68.67 46.51 67.73 24.03 ≤60 Cu 59.40 19.08 34.66 38.21 10.78 28.22 23.31 ≤100 Zn 283.57 102.45 145.83 152.46 41.89 27.48 59.21 ≤300 Cd 0.90 0.28 0.53 0.55 0.16 29.07 0.130 ≤0.60 Pb 60.03 16.80 24.43 27.73 11.55 41.65 20.97 ≤350 表 4 不同梯度的非致癌健康风险
Table 4. Hazard quotient (HQ) with different gradients
人群 梯度范围/m Cr Cu Zn Cd Pb HI 儿童 0 1.37×10−1 1.99×10−3 1.21×10−3 1.38×10−3 5.09×10−2 1.92×10−1 5 1.58×10−1 3.15×10−3 1.53×10−3 1.92×10−3 2.43×10−2 1.89×10−1 10 1.72×10−1 3.07×10−3 1.60×10−3 1.97×10−3 2.02×10−2 1.99×10−1 20 1.42×10−1 2.78×10−3 1.44×10−3 1.70×10−3 2.68×10−2 1.75×10−1 50 1.83×10−1 2.25×10−3 1.34×10−3 1.46×10−3 1.73×10−2 2.05×10−1 100 9.69×10−2 3.29×10−3 2.86×10−3 1.60×10−3 1.77×10−2 1.22×10−1 成人 0 7.98×10−2 1.11×10−3 6.81×10−4 8.27×10−4 2.86×10−2 1.11×10−1 5 9.22×10−2 1.77×10−3 8.58×10−4 1.15×10−3 1.37×10−2 1.10×10−1 10 1.01×10−1 1.72×10−3 8.97×10−4 1.18×10−3 1.14×10−2 1.16×10−1 20 8.32×10−2 1.56×10−3 8.09×10−4 1.02×10−3 1.51×10−2 1.02×10−1 50 1.07×10−1 1.27×10−3 7.51×10−4 8.76×10−4 9.72×10−3 1.20×10−1 100 5.66×10−2 1.85×10−3 1.61×10−3 9.58×10−4 9.95×10−3 7.10×10−2 表 5 重金属不同梯度的致癌健康风险
Table 5. Carcinogenic health risks of heavy metals with different gradients
重金属 梯度范围/m 0 5 10 20 50 100 Cd 7.65$ \times $10−11 1.07$ \times $10−10 1.09$ \times $10−10 9.43$ \times $10−11 8.10$ \times $10−11 8.86$ \times $10−11 Cr 1.56$ \times $10−7 1.81$ \times $10−7 1.97$ \times $10−7 1.63$ \times $10−7 2.10$ \times $10−7 1.11$ \times $10−7 Rtotal 1.56$ \times $10−7 1.81$ \times $10−7 1.98$ \times $10−7 1.63$ \times $10−7 2.10$ \times $10−7 1.11$ \times $10−7 -
[1] LIN C S, HUANG R J, DUAN J, et al. Large contribution from worship activities to the atmospheric soot particles in Northwest China[J]. Environmental Pollution,2022,299:118907. doi: 10.1016/j.envpol.2022.118907 [2] HO C K, TSENG W R, YANG C Y. Adverse respiratory and irritant health effects in temple workers in Taiwan[J]. Journal of Toxicology and Environmental Health Part A,2005,68(17/18):1465-1470. [3] JETTER J J, GUO Z S, McBRIAN J A, et al. Characterization of emissions from burning incense[J]. Science of the Total Environment,2002,295(1/2/3):51-67. [4] DALIBALTA S, ELSAYED Y, ALQTAISHAT F, et al. A health risk assessment of Arabian incense (Bakhour) smoke in the United Arab Emirates[J].Science of the Total Environment, 2015, 511: 684-691. [5] FANG G C, CHANG C N, CHU C C, et al. Fine (PM2.5), coarse (PM2.5-10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan[J]. Chemosphere,2003,51(9):983-991. doi: 10.1016/S0045-6535(03)00124-3 [6] HEYS K A, SHORE R F, PEREIRA M G, et al. Risk assessment of environmental mixture effects[J]. RSC Advances,2016,6(53):47844-47857. doi: 10.1039/C6RA05406D [7] WILSON B, PYATT F B. Heavy metal dispersion, persistance, and bioccumulation around an ancient copper mine situated in Anglesey, UK[J]. Ecotoxicology and Environmental Safety,2007,66(2):224-231. doi: 10.1016/j.ecoenv.2006.02.015 [8] CHENG Z, CHEN L J, LI H H, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China[J]. Science of the Total Environment,2018,619/620:621-629. doi: 10.1016/j.scitotenv.2017.11.144 [9] HAN Q, WANG M S, CAO J L, et al. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China[J]. Ecotoxicology and Environmental Safety,2020,191:110157. doi: 10.1016/j.ecoenv.2019.110157 [10] FERREIRA-BAPTISTA L, de MIGUEL E. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment[J]. Atmospheric Environment,2005,39(25):4501-4512. doi: 10.1016/j.atmosenv.2005.03.026 [11] LAU O. Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong[J]. Atmospheric Environment, 2001, 35(18): 3113-3120. [LinkOut]. [12] CHEN K F, TSAI Y P, LAI C H, et al. Human health-risk assessment based on chronic exposure to the carbonyl compounds and metals emitted by burning incense at temples[J]. Environmental Science and Pollution Research,2021,28(30):40640-40652. doi: 10.1007/s11356-020-10313-1 [13] KHEZRI B, CHAN Y Y, TIONG L Y D, et al. Annual air pollution caused by the Hungry Ghost Festival[J]. Environmental Science Processes & Impacts,2015,17(9):1578-1586. [14] CHIANG K C, LIAO C M. Heavy incense burning in temples promotes exposure risk from airborne PMs and carcinogenic PAHs[J]. Science of the Total Environment,2006,372(1):64-75. doi: 10.1016/j.scitotenv.2006.08.012 [15] AL-SHIDI H K, AL-REASI H A, SULAIMAN H. Heavy metals levels in road dust from Muscat, Oman: relationship with traffic volumes, and ecological and health risk assessments[J]. International Journal of Environmental Health Research,2022,32(2):264-276. doi: 10.1080/09603123.2020.1751806 [16] FAN P, LU X W, YU B, et al. Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust[J]. Environment International,2022,160:107073. doi: 10.1016/j.envint.2021.107073 [17] 王涛, 司万童, 欧阳琰, 等. 陕西某钼矿区土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(4):440-446. doi: 10.12153/j.issn.1674-991X.2019.01.080WANG T, SI W T, OUYANG Y, et al. Characteristic and evaluation of soil heavy metals pollution in the molybdenum mine area in Shaanxi[J]. Journal of Environmental Engineering Technology,2019,9(4):440-446. doi: 10.12153/j.issn.1674-991X.2019.01.080 [18] 吴庆瑶, 张丽娟, 丁平, 等. 常州某纺织工业园区周边PM2.5和PM10中重金属源解析及健康风险评估[J]. 环境工程技术学报,2023,13(1):114-121. doi: 10.12153/j.issn.1674-991X.20210475WU Q Y, ZHANG L J, DING P, et al. Source analysis and health risk assessment of heavy metals in PM2.5 and PM10 around a textile industrial park in Changzhou[J]. Journal of Environmental Engineering Technology,2023,13(1):114-121. doi: 10.12153/j.issn.1674-991X.20210475 [19] 马建华, 王晓云, 侯千, 等. 某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究,2011,30(3):486-495.MA J H, WANG X Y, HOU Q, et al. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens[J]. Geographical Research,2011,30(3):486-495. [20] CHATTOPADHYAY G, LIN K C P, FEITZ A J. Household dust metal levels in the Sydney metropolitan area[J]. Environmental Research,2003,93(3):301-307. doi: 10.1016/S0013-9351(03)00058-6 [21] COHEN R, SEXTON K G, YEATTS K B. Hazard assessment of United Arab Emirates (UAE) incense smoke[J]. Science of the Total Environment,2013,458/459/460:176-186. [22] US EPA. Soil screening guidance: technical background document[R]. Washington D C: Office of Solid Waste and Emergency Response, US Environmental Protection Agency, 1996. [23] WEI B G, YANG L S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China[J]. Microchemical Journal,2010,94(2):99-107. doi: 10.1016/j.microc.2009.09.014 [24] DU Y R, GAO B, ZHOU H D, et al. Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China[J]. Procedia Environmental Sciences,2013,18:299-309. doi: 10.1016/j.proenv.2013.04.039 [25] 中华人民共和国环境保护部. 污染场地风险评估技术导则: HJ 25.3—2014[S]. 北京: 中国环境科学出版社, 2014. [26] MEANS B. Risk-assessment guidance for superfund. Volume 1: human health evaluation manual. Part A: interim report (Final)[R]. Washington D C: US EPA, Office of Solid Waste and Emergency Response, 1989. [27] US EPA. Exposure factors handbook[S]. Washington DC: Office of Research and Development, 1997. [28] US EPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington D C: Office of Emergency and Remedial Response, 2002. [29] 张浩, 王辉, 汤红妍, 等. 铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J]. 环境科学学报,2020,40(3):1085-1094.ZHANG H, WANG H, TANG H Y, et al. Heavy metal pollution characteristics and health risk evaluation of soil and vegetables in various functional areas of lead-zinc tailings pond[J]. Acta Scientiae Circumstantiae,2020,40(3):1085-1094. [30] GUAN Q Y, WANG F F, XU C Q, et al. Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, Northwest China[J]. Chemosphere,2018,193:189-197. doi: 10.1016/j.chemosphere.2017.10.151 [31] PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994,5(2):111-126. doi: 10.1002/env.3170050203 [32] 国家环境保护局, 国家技术监督局. 土壤环境质量标准: GB 15618—1995[S]. 北京: 中国标准出版社, 2006. [33] 马建华, 姜玉玲, 王洋洋, 等. 豫境黄淮海平原土壤重金属背景值研究[J]. 环境科学学报,2022,42(12):241-250.MA J H, JIANG Y L, WANG Y Y, et al. Background values of heavy metals in soils of the Huanghuaihai Plain in Henan Province, China[J]. Acta Scientiae Circumstantiae,2022,42(12):241-250. [34] WANG Y T, GUO G H, ZHANG D G, et al. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis[J]. Environmental Pollution,2021,276:116666. doi: 10.1016/j.envpol.2021.116666 [35] HU B F, ZHOU Y, JIANG Y F, et al. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China (2002-2012)[J]. Journal of Environmental Management,2020,271:110943. doi: 10.1016/j.jenvman.2020.110943 [36] 毕珏, 张振宁, 杨丹蕾, 等. 昆明市湿地公园地表灰尘重金属污染特征及健康风险评价[J]. 中国环境监测,2023,39(3):106-119.BI J, ZHANG Z N, YANG D L, et al. Heavy metals pollution characteristics and health risk assessment of road dust in wetland parks of Kunming, southwest China[J]. Environmental Monitoring in China,2023,39(3):106-119. [37] 王呈, 钱新, 李慧明, 等. 南京公园降尘中重金属污染水平及风险评价[J]. 环境科学,2016,37(5):1662-1669.WANG C, QIAN X, LI H M, et al. Pollution evaluation and risk assessment of heavy metals from atmospheric deposition in the parks of Nanjing[J]. Environmental Science,2016,37(5):1662-1669. [38] 马建华, 朱玉涛. 嵩山景区旅游活动对土壤组成性质和重金属污染的影响[J]. 生态学报,2008,28(3):955-965. doi: 10.3321/j.issn:1000-0933.2008.03.007MA J H, ZHU Y T. Impacts of tourist activities on components, properties and heavy metal pollution of soils in the Songshan scenic area[J]. Acta Ecologica Sinica,2008,28(3):955-965. doi: 10.3321/j.issn:1000-0933.2008.03.007 [39] ARAO T, ISHIKAWA S, MURAKAMI M, et al. Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment,2010,8(3):247-257. doi: 10.1007/s10333-010-0205-7 [40] 段海静, 蔡晓强, 阮心玲, 等. 开封市公园地表灰尘重金属污染及健康风险[J]. 环境科学,2015,36(8):2972-2980.DUAN H J, CAI X Q, RUAN X L, et al. Assessment of heavy metal pollution and its health risk of surface dusts from parks of Kaifeng, China[J]. Environmental Science,2015,36(8):2972-2980. [41] 吕玉娟, 王秋月, 孙雪梅, 等. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J]. 环境工程技术学报,2023,13(4):1464-1475. doi: 10.12153/j.issn.1674-991X.20221193LÜ Y J, WANG Q Y, SUN X M, et al. Pollution characteristics and source identification of heavy metals in farmland soils around a tailing pond in Zhejiang Province[J]. Journal of Environmental Engineering Technology,2023,13(4):1464-1475. doi: 10.12153/j.issn.1674-991X.20221193 [42] HU Y A, LIU X P, BAI J M, et al. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization[J]. Environmental Science and Pollution Research,2013,20(9):6150-6159. ⊕ doi: 10.1007/s11356-013-1668-z