河南典型城市寺庙灰尘重金属健康风险及来源解析

Heavy metal health risks and source analysis of temple dust in typical cities of Henan Province

  • 摘要: 以新乡市贾湾泰山庙为研究对象,测定并分析寺庙地表灰尘中8种重金属元素(Hg、As、Cr、Ni、Cu、Zn、Cd、Pb)浓度,进行健康风险评估与重金属污染源解析。结果表明:寺庙地表灰尘中除As外的7种重金属元素存在空间变异情况,浓度超过豫境平原南区土壤环境背景值。各采集点位Cu浓度土壤背景值超标率达91.03%,Ni平均浓度超标率达151.1%。地表灰尘重金属对儿童与成人的潜在致癌、非致癌风险均低于标准值,Cr和Pb为主要非致癌因子。地表灰尘中重金属对儿童健康风险高于成人,手—口摄入为主要的接触途径。重金属健康风险指数随距炉心梯度的增加先增后减,最高值普遍位于20 m梯度处。正定矩阵因子分析表明,地表灰尘中Hg和Pb主要来自建筑油漆污染,Cr、Cu、Ni、Zn主要来自寺庙燃香污染,Cd和As主要来自农业种植和畜牧活动。寺庙燃香污染源作为主要污染贡献源占比达40.96%,农业畜牧污染源占比达37.40%,寺庙建筑污染源占比达21.64%。

     

    Abstract: The study focuses on Tai Shan Temple in Jiawan, Xinxiang City, investigating the concentrations of eight heavy metal elements (Hg, As, Cr, Ni, Cu, Zn, Cd, Pb) in surface dust and conducting health risk assessment and source apportionment of heavy metal pollution. Results reveal spatial variability in the concentrations of seven heavy metal elements (excluding As) in temple surface dust, exceeding the soil environmental background values of the southern Yu Plain. The exceedance rate of Cu concentrations over soil background values at each sampling point reaches 91.03%, with Ni showing an average exceedance rate of 151.1%. Potential carcinogenic and non-carcinogenic risks posed by heavy metals in surface dust to children and adults were found to be below standard values, with Cr and Pb identified as the primary non-carcinogenic factors. Children were found to face higher health risks from heavy metals in surface dust compared to adults, primarily through the hand-to-mouth ingestion pathway. The health risk index of heavy metals exhibited an initial increase followed by a decrease with increasing distance from the furnace core, with peak values generally observed at a gradient of 20 meters. Matrix factor analysis indicated that Hg and Pb in surface dust mainly originated from architectural paint pollution, while Cr, Cu, Ni, and Zn primarily originated from temple incense pollution, and Cd and As were predominantly sourced from agricultural and livestock activities. Temple incense pollution contributed significantly to the pollution sources, accounting for 40.96%, followed by agricultural and livestock pollution at 37.40%, and temple construction pollution at 21.64%.

     

/

返回文章
返回