Source and health risk assessment of heavy metals in farmland soil of Tianjin City
-
摘要:
为揭示城市周边蔬菜粮食种植区土壤重金属风险,同时针对目前研究中缺少经手-口摄入、呼吸途径和皮肤接触暴露途径引起的人体健康风险及估算不同来源下量化的成人和儿童的健康风险情况,以天津市西青区农田表层土壤为研究对象,分析了Cr、Cu、Ni、Pb、Zn、As、Hg、Cd共8种重金属的浓度,采用主成分分析(PCA)、正定矩阵分解(PMF)、健康风险评价模型(PMF-HRA)分别评价土壤重金属污染程度、来源及健康风险,厘定主要的重金属污染物及其暴露途径。结果表明:天津市农用地土壤8种重金属中Cd、Hg污染最为严重,均值分别超出背景值151.9%、324.1%,约有15%的点位处于中度至重度污染等级。研究区土壤重金属污染的来源主要包括自然成土过程、农业生产和交通运输、燃煤、农药使用。Cd(农药源)和Hg(燃煤源)是研究区农用地土壤污染的重要元素。在摄食农作物、手-口摄入和皮肤接触3种暴露途径下,均不存在显著的非致癌健康风险。自然源的总致癌风险指数(TCR)最高,Cr元素是源贡献中儿童非致癌风险总指数(HI)和儿童TCR的主要贡献者;燃煤源中Hg对HI的贡献最大,Cu和Zn对HI的贡献来自于农药和交通混合源。以上重金属元素的污染来源均与周围居民的工业、农业及交通活动存在密切的联系,应引起重视。
Abstract:To reveal the heavy metal risks in the soil of vegetable and grain planting areas around the city, and to address the current lack of research on human health risks caused by hand mouth intake, respiratory pathways, and skin contact exposure pathways, as well as to estimate the health risks of adults and children from different sources, the surface soil of farmland in Xiqing District, Tianjin City was taken as the research object, and the concentrations of 8 heavy metals including Cr, Cu, Ni, Pb, Zn, As, Hg, and Cd were analyzed. Principal component analysis (PCA), positive definite matrix factorization (PMF), and health risk assessment model (PMF-HRA) were used to evaluate the degree, sources, and health risks of soil heavy metal pollution, and to identify the main heavy metal pollutants and their exposure pathways. The results show that Cd and Hg pollution is the most severe among the 8 heavy metals in agricultural soil in Tianjin City, with the average exceeding the background values by 151.9% and 324.1%, respectively. About 15% of the points are at moderate to severe pollution levels. The main sources of heavy metal pollution in the soil of the research area include natural soil formation processes, agricultural production, transportation, coal burning, and pesticide use. Cd (pesticide sources) and Hg (coal-fired sources) are important elements of soil pollution in agricultural land in the study area. There is no significant non-carcinogenic health risk in three exposure pathways: ingestion of crops, hand and mouth ingestion, and skin contact. The total carcinogenic risk index (TCR) of natural sources is the highest, with Cr being the main contributor to childhood total non-carcinogenic risk indices (HI) and childhood TCR in the source contribution; Hg contributes the most to HI in coal-fired sources, while Cu and Zn contribute to HI from mixed sources of pesticides and transportation. The contributions of the above heavy metal elements are closely related to the industrial, agricultural, and transportation activities of surrounding residents, and should be taken seriously.
-
表 1 重金属健康风险暴露参数取值
Table 1. Health risk exposure parameters of heavy metals
符号 参数 成人参考值 儿童参考值 EF 暴露频率/(d/a) 300 300 ED 暴露年限/a 30 6 AT 平均暴露时间/d 非致癌365×ED 非致癌365×ED BW 平均体重/kg 60 15 Ring 手-口摄入/(mg/d) 100 200 Rinh 呼吸频率/(m3/d) 20 5 PEF 土壤排放系数/(m3/kg) 1.36×109 1.36×109 AF 皮肤黏着度/〔mg/(cm2·d)〕 0.07 0.2 SA 暴露皮肤表面积/cm2 4 350 1 660 ABS 皮肤吸收因子 0.001 0.001 表 2 重金属描述性统计分析
Table 2. Descriptive statistical characteristics of heavy metals
重金属 浓度/(mg/kg) 均值/(mg/kg) 标准差/(mg/kg) 变异系数 峰度 偏度 背景值1)/(mg/kg) 筛选值2)/(mg/kg) 管控值2)/(mg/kg) Cd 0.08~0.84 0.23 0.12 0.51 11.98 2.61 0.09 0.6 4 Cr 47.3~81.2 66.8 7.94 0.12 −0.43 −0.46 98.38 250 1300 Hg 0.011~2.29 0.212 0.34 1.62 23.38 4.32 0.05 3.4 6 Ni 22.3~42.9 32.9 5.95 0.18 −1.16 −0.19 34.46 190 Pb 16.8~50.4 26.9 6.13 0.23 2.41 1.07 20.32 170 1000 As 6.1~15.1 10.6 2 0.19 −0.58 −0.04 11.07 25 100 Cu 16.4~64.8 36.1 11.18 0.31 0.06 0.4 28.38 100 Zn 55.7~246 111 40.37 0.36 0.84 0.91 76.27 300 1)中国土壤元素背景值中天津地区背景值[34];2)GB 15618—2018《农用地土壤污染风险管控标准》中pH>7.5标准值。 表 3 土壤重金属地累积指数统计
Table 3. The geo-accumulation index of heavy metals in soil
重金属 最小值 最大值 平均值 污染等级 Cd −0.43 3.28 1.01 无污染-重度 Cr −1.64 −0.86 −1.11 无污染 Hg −1.84 3.09 0.41 无污染-重度 Ni −1.09 −0.14 −0.47 无污染 Pb −0.74 0.87 −0.08 无污染-轻微 As −1.22 0.08 −0.50 无污染-轻微 Cu −1.38 1.09 −0.01 无污染-轻度 Zn −0.97 1.28 0.15 无污染-轻度 表 4 旋转后分量载荷及贡献率
Table 4. Load and contribution rate of main components after being spun
分量 因子载荷 方差
贡献率/%累计方差
贡献率/%Cd Cr Hg Ni Pb As Cu Zn PC1 0.206 0.827 −0.021 0.915 0.626 0.903 0.341 0.307 59.1 59.1 PC2 0.285 0.406 0.052 0.258 0.518 0.206 0.888 0.877 16.9 76.0 PC3 0.283 0.079 0.943 0.070 0.393 0.062 0.050 0.199 9.3 85.3 PC4 0.888 0.183 0.204 0.161 0.113 0.053 0.191 0.205 6.3 91.6 表 5 土壤重金属人体健康风险评价结果
Table 5. Results of human health risk assessment for soil heavy metals
重金属 儿童 成人 HQing HQinh HQder CRing CRinh CRder HQing HQinh HQder CRing CRinh CRder Cd 2.48×10−3 4.57×10−8 4.12×10−4 1.52×10−5 8.22×10−14 2.52×10−8 3.11×10−4 4.57×10−8 9.45×10−5 1.89×10−6 8.22×10−14 5.77×10−9 Cr 2.44×10−1 4.71×10−4 2.03×10−2 5.65×10−7 3.05×10−2 4.71×10−4 4.64×10−3 5.65×10−7 Hg 7.75×10−3 2.85×10−6 4.49×10−5 9.68×10−4 2.85×10−6 1.03×10−5 Ni 1.81×10−2 3.22×10−7 1.11×10−4 5.58×10−9 2.26×10−3 3.22×10−7 2.54×10−5 5.58×10−9 Pb 8.41×10−2 1.54×10−6 9.36×10−4 1.05×10−2 1.54×10−6 2.15×10−4 As 3.88×10−1 1.74×10−5 6.44×10−4 1.74×10−4 9.19×10−12 2.90×10−7 4.85×10−2 1.74×10−5 1.48×10−4 2.18×10−5 9.19×10−12 6.64×10−8 Cu 9.88×10−3 1.81×10−7 5.47×10−5 1.23×10−3 1.81×10−7 1.25×10−5 Zn 4.05×10−3 7.44×10−8 3.36×10−5 5.06×10−4 7.44×10−8 7.71×10−6 小计 7.58×10−1 4.93×10−4 2.25×10−2 9.48×10−2 4.93×10−4 5.16×10−3 合计 7.81×10−1 1.90×10−4 1.00×10−1 2.43×10−5 表 6 评估各污染来源重金属的非致癌与致癌风险
Table 6. Estimation of non-carcinogenic and carcinogenic risks of heavy metals from each pollution source
风险
类别重金属 儿童 成人 因子1 因子2 因子3 因子4 总因素 因子1 因子2 因子3 因子4 总因素 非致癌风险 Cd 2.38×10−7 1.08×10−2 4.75×10−3 4.39×10−4 1.60×10−2 3.05×10−8 1.38×10−3 6.08×10−4 5.63×10−5 2.04×10−3 Cr 7.55×10−2 2.95×10−2 2.75×10−3 5.47×10−2 1.62×10−1 9.67×10−3 3.78×10−3 3.52×10−4 7.00×10−3 2.08×10−2 Hg 4.28×10−5 4.92×10−5 2.33×10−4 2.38×10−7 3.25×10−4 5.48×10−6 6.30×10−6 2.98×10−5 3.05×10−8 4.16×10−5 Ni 4.12×10−2 1.66×10−2 1.72×10−3 2.98×10−2 8.93×10−2 5.27×10−3 2.13×10−3 2.20×10−4 3.81×10−3 1.14×10−2 Pb 2.51×10−2 1.27×10−2 6.23×10−3 2.30×10−2 6.70×10−2 3.21×10−3 1.63×10−3 7.98×10−4 2.95×10−3 8.59×10−3 As 1.32×10−2 5.31×10−3 1.33×10−6 9.36×10−3 2.79×10−2 1.69×10−3 6.79×10−4 1.70×10−7 1.20×10−3 3.57×10−3 Cu 4.51×10−3 1.82×10−2 1.13×10−2 6.91×10−2 1.03×10−1 5.78×10−4 2.33×10−3 1.45×10−3 8.85×10−3 1.32×10−2 Zn 2.38×10−7 5.26×10−2 4.29×10−2 2.19×10−1 3.15×10−1 3.05×10−8 6.73×10−3 5.49×10−3 2.81×10−2 4.03×10−2 HI 1.60×10−1 1.46×10−1 6.99×10−2 4.05×10−1 7.81×10−1 2.04×10−2 1.87×10−2 8.95×10−3 5.20×10−2 1.00×10−1
致癌风险Cd 1.53×10−10 2.83×10−7 3.06×10−6 6.96×10−6 1.03×10−5 1.96×10−11 3.62×10−8 3.91×10−7 8.89×10−7 1.32×10−6 Cr 4.87×10−5 1.90×10−5 1.77×10−6 3.52×10−5 1.05×10−4 6.22×10−6 2.43×10−6 2.26×10−7 4.50×10−6 1.34×10−5 Ni 2.65×10−5 1.07×10−5 1.11×10−6 1.92×10−5 5.75×10−5 3.39×10−6 1.37×10−6 1.41×10−7 2.45×10−6 7.35×10−6 As 8.51×10−6 3.42×10−6 8.54×10−10 6.03×10−6 1.80×10−5 1.09×10−6 4.37×10−7 1.09×10−10 7.71×10−7 2.3×10−6 TCR 8.37×10−5 3.34×10−5 5.94×10−6 6.74×10−5 1.90×10−4 1.07×10−5 4.27×10−6 7.59×10−7 8.62×10−6 2.43×10−5 -
[1] 尹芳, 封凯, 尹翠景. 等. 青海典型工业区耕地土壤重金属评价及源解析[J]. 中国环境科学,2021,41(11):5217-5226.YIN F, FENG K, YIN C J, et al. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai Province[J]. China Environmental Science,2021,41(11):5217-5226. [2] ARORA M, KIRAN B, RANI S, et al. Heavy metal accumulation in vegetables irrigated with water from different sources[J]. Food Chemistry,2008,111(4):811-815. doi: 10.1016/j.foodchem.2008.04.049 [3] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018. [4] 生态环境部. 2020年中国生态环境状况公报[R]. 北京: 生态环境部, 2020. [5] 郭莉. 京津冀平原区土壤环境质量和土地资源分布特征[J]. 城市地质,2017,12(2):60-64.GUO L. Soil environmental quality of and land resources distribution characteristics in Beijing-Tianjin-Hebei Plain[J]. Urban Geology,2017,12(2):60-64. [6] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报,2019,38(10):2219-2238.CHEN Y L, WENG L P, MA J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science,2019,38(10):2219-2238. [7] 张家根, 夏建东, 陈书琴, 等. 基于铅稳定同位素的骆马湖沉积物重金属铅来源解析[J]. 环境工程技术学报,2023,13(3):1011-1020.ZHANG J G, XIA J D, CHEN S Q, et al. Source analysis of heavy metal lead in Luoma Lake sediments based on Pb stable isotopes[J]. Journal of Environmental Engineering Technology,2023,13(3):1011-1020. [8] 刘勇, 张红, 尹京苑. 汾河太原段土壤中Hg、Cr空间分布与污染评价[J]. 农业工程学报,2008,24(5):57-60.LIU Y, ZHANG H, YIN J Y. Pollution assessment and spatial distribution of soil Hg and Cr in the Taiyuan area of the Fenhe River[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(5):57-60. [9] HUO X N, LI H, SUN D F, et al. Multi-scale spatial structure of heavy metals in agricultural soils in Beijing[J]. Environmental Monitoring and Assessment,2010,164(1):605-616. [10] KIM B S M, ANGELI J L F, FERREIRA P A L, et al. Critical evaluation of different methods to calculate the Geoaccumulation Index for environmental studies: a new approach for Baixada Santista - Southeastern Brazil[J]. Marine Pollution Bulletin,2018,127:548-552. doi: 10.1016/j.marpolbul.2017.12.049 [11] 黄华斌, 林承奇, 于瑞莲, 等. 安溪铁观音茶园土壤重金属分布及污染评价[J]. 环境化学,2018,37(5):994-1001.HUANG H B, LIN C Q, YU R L, et al. Distribution and pollution assessment of heavy metals in soils from Tieguanyin tea garden of Anxi County[J]. Environmental Chemistry,2018,37(5):994-1001. [12] QADEER A, AHMAD SAQIB Z, AJMAL Z, et al. Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: comparing two sampling methods for heavy metals concentration[J]. Sustainable Cities and Society,2020,53:101959. doi: 10.1016/j.scs.2019.101959 [13] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术,2008,31(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology,2008,31(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030 [14] 应蓉蓉, 张晓雨, 孔令雅, 等. 农用地土壤环境质量评价与类别划分研究[J]. 生态与农村环境学报,2020,36(1):18-25.YING R R, ZHANG X Y, KONG L Y, et al. Technical analysis of soil environmental quality evaluation and category classification of agricultural land[J]. Journal of Ecology and Rural Environment,2020,36(1):18-25. [15] 于旦洋, 王颜红, 丁茯, 等. 近十年来我国土壤重金属污染源解析方法比较[J]. 土壤通报,2021,52(4):1000-1008.YU D Y, WANG Y H, DING F, et al. Comparison of analysis methods of soil heavy metal pollution sources in China in last ten years[J]. Chinese Journal of Soil Science,2021,52(4):1000-1008. [16] 李剑锋, 冯李霄, 陈希清, 等. 大义山东南部土壤重金属分布特征及其风险评价[J]. 环境工程技术学报,2023,13(1):287-294.LI J F, FENG L X, CHEN X Q, et al. Heavy metal distribution characteristics of soils in southeastern Dayi Mountain and its risk evaluation[J]. Journal of Environmental Engineering Technology,2023,13(1):287-294. [17] 李伟, 高海涛, 张娜, 等. 拉萨市城区土壤重金属分布特征及生态风险评价[J]. 环境工程技术学报,2022,12(3):869-877.LI W, GAO H T, ZHANG N, et al. Distribution characteristics and ecological risk assessment of heavy metals in soil of Lhasa City[J]. Journal of Environmental Engineering Technology,2022,12(3):869-877. [18] 张又文, 韩建华, 涂棋, 等. 天津市郊农田土壤重金属积累特征及评价[J]. 生态与农村环境学报,2019,35(11):1445-1452.ZHANG Y W, HAN J H, TU Q, et al. Accumulation characteristics and evaluation of heavy metals in suburban farmland soils of Tianjin[J]. Journal of Ecology and Rural Environment,2019,35(11):1445-1452. [19] 王润珑, 徐应明, 王农, 等. 天津污灌区菜地土壤团聚体中有机碳和重金属含量特征[J]. 环境科学学报,2018,38(11):4490-4496.WANG R L, XU Y M, WANG N, et al. Characteristics of organic carbon and heavy metals in aggregates of wastewater irrigation soils of Tianjin[J]. Acta Scientiae Circumstantiae,2018,38(11):4490-4496. [20] 陈宗娟, 张倩, 张强, 等. 天津东南部某区域不同土地利用方式下土壤重金属的累积特征[J]. 生态与农村环境学报,2015,31(2):166-173.CHEN Z J, ZHANG Q, ZHANG Q, et al. Accumulation characteristics of heavy metals in soils as affected by land use in southeast Tianjin[J]. Journal of Ecology and Rural Environment,2015,31(2):166-173. [21] 王斌, 张震. 天津近郊农田土壤重金属污染特征及潜在生态风险评价[J]. 中国环境监测,2012,28(3):23-27.WANG B, ZHANG Z. The features and potential ecological risk assessment of soil heavy metals in Tianjin suburban farmland[J]. Environmental Monitoring in China,2012,28(3):23-27. [22] 纪冬丽, 曾琬晴, 张新波, 等. 天津近郊农田土壤重金属风险评价及空间主成分分析[J]. 环境化学,2019,38(9):1955-1965.JI D L, ZENG W Q, ZHANG X B, et al. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin[J]. Environmental Chemistry,2019,38(9):1955-1965. [23] 彭皓, 马杰, 马玉玲, 等. 天津市武清区农田土壤和蔬菜中重金属污染特征及来源解析[J]. 生态学杂志,2019,38(7):2102-2112.PENG H, MA J, MA Y L, et al. Characteristics and source identification of heavy metal pollution in agricultural soils and vegetables in Wuqing District, Tianjin City, China[J]. Chinese Journal of Ecology,2019,38(7):2102-2112. [24] 陈锦芳, 方宏达, 巫晶晶, 等. 基于PMF和Pb同位素的农田土壤中重金属分布及来源解析[J]. 农业环境科学学报,2019,38(5):1026-1035. doi: 10.11654/jaes.2018-1170CHEN J F, FANG H D, WU J J, et al. Distribution and source apportionment of heavy metals in farmland soils using PMF and lead isotopic composition[J]. Journal of Agro-Environment Science,2019,38(5):1026-1035. doi: 10.11654/jaes.2018-1170 [25] CHEN H Y, TENG Y G, LU S J, et al. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China[J]. Chemosphere,2016,144:1002-1011. doi: 10.1016/j.chemosphere.2015.09.081 [26] 张浩, 王洋, 王辉, 等. 某废铅蓄电池炼铅遗留场地土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2023,13(2):769-777.ZHANG H, WANG Y, WANG H, et al. Heavy metal pollution characteristics and health risk assessment of soil from an abandoned site for lead smelting of waste lead batteries[J]. Journal of Environmental Engineering Technology,2023,13(2):769-777. [27] 程睿. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287.CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287. [28] 王红梅, 吴健芳, 田自强, 等. 土壤污染物健康风险评价技术现状及发展趋势[J]. 环境工程技术学报,2023,13(2):778-784.WANG H M, WU J F, TIAN Z Q, et al. Status and development trend of soil pollutant health risk assessment technology[J]. Journal of Environmental Engineering Technology,2023,13(2):778-784. [29] 赵显林, 段磊, 周建利, 等. 湖北网湖沉积物重金属分布特征、源解析及风险评价[J]. 环境工程技术学报,2023,13(3):1021-1030. doi: 10.12153/j.issn.1674-991X.20220729ZHAO X L, DUAN L, ZHOU J L, et al. Distribution characteristics, source analysis and risk assessment of heavy metals in sediments of Wanghu Lake of Hubei Province[J]. Journal of Environmental Engineering Technology,2023,13(3):1021-1030. doi: 10.12153/j.issn.1674-991X.20220729 [30] 吕玉娟, 王秋月, 孙雪梅, 等. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J]. 环境工程技术学报,2023,13(4):1464-1475.LÜ Y J, WANG Q Y, SUN X M, et al. Pollution characteristics and source identification of heavy metals in farmland soils around a tailing pond in Zhejiang Province[J]. Journal of Environmental Engineering Technology,2023,13(4):1464-1475. [31] US EPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington DC: Office of Emergency and Remedial Response, 2002: 4-24. [32] US EPA. Risk assessment guidance for superfund: Volume Ⅰ. human health evaluation manual: Part A[R]. Washington DC: Immediate Office, US Environmental Protection Agency, 1989. [33] 环境保护部. 中国人群暴露参数手册:成人卷[M]. 北京: 中国环境出版社, 2013. [34] 国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 494-496. [35] 宋清泉, 徐夕博, 吴泉源, 等. 基于PMF模型的土壤重金属定量源解析及环境风险评价[J]. 湖南师范大学自然科学学报,2022,45(1):76-83.SONG Q Q, XU X B, WU Q Y, et al. Quantitative analysis of environmental risk of heavy metal sources in soil based on PMF model[J]. Journal of Natural Science of Hunan Normal University,2022,45(1):76-83. [36] 庄树林. 环境数据分析[M]. 2版. 北京: 科学出版社, 2023. [37] 于林松, 万方, 范海印, 等. 姜湖贡米产地土壤重金属空间分布、源解析及生态风险评价[J]. 环境科学, 2022, 43(8): 4199-4211.YU L S, WAN F, FAN H Y, et al. Spatial distribution, source apportionment, and ecological risk assessment of soil heavy metals in Jianghugongmi producing area, Shandong Province[J]. Environmental Science, 2022, 43(8): 4199-4211. [38] 李学垣. 土壤化学[M]. 北京: 高等教育出版社, 2001. [39] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987. [40] LUO L, MA Y B, ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management,2009,90(8):2524-2530. doi: 10.1016/j.jenvman.2009.01.011 [41] 李伟迪, 崔云霞, 曾撑撑, 等. 太滆运河流域农田土壤重金属污染特征与来源解析[J]. 环境科学,2019,40(11):5073-5081.LI W D, CUI Y X, ZENG C C, et al. Pollution characteristics and source analysis of heavy metals in farmland soils in the Taige Canal Valley[J]. Environmental Science,2019,40(11):5073-5081. [42] 鞠铁男, 吴啸, 师华定, 等. 海沟河小流域耕地土壤重金属污染与生态风险评价[J]. 环境工程技术学报,2018,8(5):556-562.JU T N, WU X, SHI H D, et al. Heavy metal pollution and ecological risk assessment of arable land soil in Haigou small watershed[J]. Journal of Environmental Engineering Technology,2018,8(5):556-562. [43] 艾建超, 王宁, 杨净. 基于UNMIX模型的夹皮沟金矿区土壤重金属源解析[J]. 环境科学,2014,35(9):3530-3536.AI J C, WANG N, YANG J. Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model[J]. Environmental Science,2014,35(9):3530-3536. [44] ZHAO K L, LIU X M, XU J M, et al. Heavy metal contaminations in a soil-rice system: identification of spatial dependence in relation to soil properties of paddy fields[J]. Journal of Hazardous Materials,2010,181(1/2/3):778-787. ⊕