留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于危害性评价的危险废物分级方法研究

吴丹 刘彦君 孟令易 傅海辉 王雪娇 杨子良

吴丹,刘彦君,孟令易,等.基于危害性评价的危险废物分级方法研究:以电子行业为例[J].环境工程技术学报,2024,14(3):1034-1042 doi: 10.12153/j.issn.1674-991X.20230808
引用本文: 吴丹,刘彦君,孟令易,等.基于危害性评价的危险废物分级方法研究:以电子行业为例[J].环境工程技术学报,2024,14(3):1034-1042 doi: 10.12153/j.issn.1674-991X.20230808
WU D,LIU Y J,MENG L Y,et al.Research on hazardous waste classification method based on hazard assessment: taking the electronics industry as an example[J].Journal of Environmental Engineering Technology,2024,14(3):1034-1042 doi: 10.12153/j.issn.1674-991X.20230808
Citation: WU D,LIU Y J,MENG L Y,et al.Research on hazardous waste classification method based on hazard assessment: taking the electronics industry as an example[J].Journal of Environmental Engineering Technology,2024,14(3):1034-1042 doi: 10.12153/j.issn.1674-991X.20230808

基于危害性评价的危险废物分级方法研究—以电子行业为例

doi: 10.12153/j.issn.1674-991X.20230808
基金项目: 国家重点研发计划项目(2018YFC1902801)
详细信息
    作者简介:

    吴丹(1999—),女,硕士研究生,主要从事固体废物污染控制技术研究,wu22044268@163.com

    通讯作者:

    杨子良(1980—),男,高级工程师,主要从事固体废物污染控制技术研究,yangzl@craes.org.cn

  • 中图分类号: X502

Research on hazardous waste classification method based on hazard assessment: taking the electronics industry as an example

  • 摘要:

    为解决不同危险特性之间的风险比较及探索危险废物的分级分类管理问题,将危险废物中的有毒有害物质作为风险物质,参考GB 18218—2018《危险化学品重大危险源辨识》和HJ 941—2018《企业突发环境事件风险分级方法》中风险源评价方法中临界量的概念,提出危险废物危害值和危害率的概念,将危险废物的危害性定量化,建立危险废物分级方法,对危险废物及产废企业进行分级。对北京市5家电子行业企业的7种危险废物进行采样检测,并按建立的方法进行评价,结果表明:采集的危险废物涉及易燃性、腐蚀性、毒性,危害率从高到低分别为具有易燃性、腐蚀性、毒性的危险废物;废有机溶剂与酸洗废液的危害值较高;企业的危险废物危害值从大到小依次为A(6.13)、B(2.12)、C(1.23)、E(1.20)、D(0.82)。研究显示,危害率可以区分危险废物自身的固有危害,可作为危险废物分级的指标,比较不同危险特性废物的风险;危害值可作为企业危险废物分级管理的参考。

     

  • 图  1  样品中重金属浸出浓度

    Figure  1.  Leaching concentration of heavy metals in samples

    图  2  样品中挥发性有机污染物的浸出浓度

    Figure  2.  Leaching concentrations of volatile organic pollutants in samples

    图  3  挥发性有机物的成分组成和危害值占比

    Figure  3.  Composition and hazard value percentage of volatile organic compounds

    图  4  各危险废物存在量及危害值

    Figure  4.  Hazardous waste presence and hazard value of each hazardous waste

    图  5  企业危险废物环境危害值组成

    Figure  5.  Composition of environmental hazard value of hazardous waste in enterprises

    表  1  试验材料

    Table  1.   Test materials

    样品编号主要产品废物类型废物代码存在量/t主要成分可能的危险特性
    A1芯片铜制程废液398-005-227.53硫酸铜、硫酸毒性
    A2硫酸废液900-300-3429.7660%硫酸腐蚀性、毒性
    A3磷酸废液900-300-3416.6955%磷酸腐蚀性、毒性
    A4硝酸废液900-300-3430.6750%硝酸腐蚀性、毒性
    B1清洗废液900-402-063.48丙酮、异丙胺毒性、易燃性、反应性
    B2废去光阻液900-404-069.0670%丙二醇甲醚、30%丙二醇甲醚乙酸酯毒性、易燃性、反应性
    B3显影废液900-404-068.65环戊酮毒性、易燃性、反应性
    B4含砷废液261-139-245.45毒性
    C1液晶显示屏废剥离液900-404-0622.64乙醇胺(MEA)、二乙二醇单丁醚毒性、易燃性、反应性
    C2PI液900-404-0617.95N-甲基吡咯烷酮毒性、易燃性、反应性
    C3蚀刻液398-007-3424.07磷酸、醋酸、硝酸腐蚀性、毒性
    C4废稀释剂900-402-067.25乙酸丁酯毒性、易燃性、反应性
    C5废剥离液900-404-063.593.8%盐酸、2%氯化铁毒性、易燃性、反应性
    D1蚀刻液398-007-3415.46磷酸、硝酸、醋酸腐蚀性、毒性
    D2废剥离液900-404-0613.57乙醇胺(MEA)、二乙二醇单丁醚毒性、易燃性、反应性
    D3废稀释剂900-402-067.32乙酸丁酯毒性、易燃性、反应性
    E1印刷电路板电镀污泥336-062-1732.36含铜污泥毒性
    E2清洗废液900-300-3428.6630%盐酸腐蚀性、毒性
      注:废物代码、危险特性来自《国家危险废物名录》(2021年版)。
    下载: 导出CSV

    表  2  样品腐蚀性结果

    Table  2.   Sample corrosion results

    样品编号 pH 样品编号 pH
    A1 1.36 C3 0.13
    A2 <0 C5 <0
    A3 <0 D1 0.05
    A4 <0 D2 10.58
    B4 1.39 E1 6.97
    C1 10.27 E2 <0
    下载: 导出CSV

    表  3  腐蚀性样品危害值

    Table  3.   Hazard values of corrosive samples

    样品编号m1物质组成m2腐蚀性
    危害值
    腐蚀性理
    论危害值
    A12.4×10−31.8×10−3
    A260%硫酸0.60>0.161.8
    A355%磷酸0.55>0.110.92
    A450%硝酸0.50>0.282.1
    B43.4×10−32.5×10−3
    C34.9×10−2磷酸、硝酸、醋酸0.12
    C53.8%盐酸、2%氯化铁0.038>0.040.018
    D15.9×10−2磷酸、硝酸、醋酸0.09
    E230%盐酸0.30>0.321.1
      注: A1、B4、C3、D1采用m1计算,A2、A3、A4、C5、E2采用m2计算。m1为根据pH计算得出样品中腐蚀性物质的占比,m2为根据样品成分得出样品中腐蚀性物质的占比。
    下载: 导出CSV

    表  4  样品成分与闪点

    Table  4.   Sample composition and flash point

    样品编号 主要成分 闪点/℃ 是否具有
    易燃性
    危险特性
    危害率 易燃性危害值
    B1 丙酮
    异丙胺
    −18
    −26
    0.1 0.35
    B2 丙二醇甲醚
    丙二醇甲醚醋酸酯
    31.1
    47.9
    0.1 0.91
    B3 环戊酮 30.5 0.1 0.87
    C1 乙醇胺(MEA)
    二乙二醇单丁醚
    93.3
    110
    C2 N-甲基吡咯烷酮 86.1 0.02 0.36
    C4 乙酸丁酯 22.2 0.1 0.73
    D2 乙醇胺(MEA)
    二乙二醇单丁醚
    93.3
    110
    D3 乙酸丁酯 22.2 0.1 0.73
    下载: 导出CSV

    表  5  样品中3种危害特性危害率及危险废物危害率

    Table  5.   Hazard rate of three hazard characteristics and hazardous waste hazard rate in samples

    样品编号 危废代码 危险特性 腐蚀性物质危害率 易燃性物质危害率 毒性物质危害率 危险废物危害率
    A1 398-005-22 腐蚀性、毒性 2.40×10−4 0.047 0.047
    A2 900-300-34 腐蚀性 0.06 1.1×10−5 0.06
    A3 900-300-34 腐蚀性 0.055 2.5×10−6 0.055
    A4 900-300-34 腐蚀性、毒性 0.067 0.033 0.1
    B1 900-402-06 易燃性、毒性 0.1 2.2×10−6 0.1
    B2 900-404-06 易燃性、毒性 0.1 2.5×10−7 0.1
    B3 900-404-06 易燃性、毒性 0.1 7.5×10−7 0.1
    B4 261-139-24 腐蚀性、毒性 4.50×10−4 3.1×10−4 7.60×10−4
    C1 900-404-06 3.1×10−6 3.10×10−6
    C2 900-404-06 毒性 0.02 1.3×10−6 0.02
    C3 398-007-34 腐蚀性 4.90×10−3 7.9×10−6 4.91×10−3
    C4 900-402-06 易燃性、毒性 0.1 1.5×10−5 0.1
    C5 900-404-06 腐蚀性、毒性 5.10×10−3 8.9×10−5 5.19×10−3
    D1 398-007-34 腐蚀性 5.90×10−3 7.1×10−6 5.91×10−3
    D2 900-404-06 1.8×10−6 1.80×10−6
    D3 900-402-06 易燃性、毒性 0.1 2.6×10−7 0.1
    E1 336-062-17 2.7×10−5 2.7×10−5
    E2 900-300-34 腐蚀性、毒性 0.04 9.4×10−5 0.04
      注: C2的主要成分N-甲基吡咯烷酮属于具有易燃性的化学品。
    下载: 导出CSV
  • [1] 黄启飞, 王菲, 黄泽春, 等. 危险废物环境风险防控关键问题与对策[J]. 环境科学研究,2018,31(5):789-795.

    HUANG Q F, WANG F, HUANG Z C, et al. Key issues and countermeasures on environmental risk prevention and control of hazardous wastes[J]. Research of Environmental Sciences,2018,31(5):789-795.
    [2] 冯真, 龙思杰, 胡骏嵩, 等. 中国工业危险废物现状调查及利用处置对策[J]. 化工管理,2023(24):61-64.

    FENG Z, LONG S J, HU J S, et al. Investigation into the current situation of the utilization and disposal of industrial hazardous waste in China and research on countermeasures[J]. Chemical Enterprise Management,2023(24):61-64.
    [3] XU L, DENG Y F, MANCL K. Environmental disaster risk reduction-oriented centralized treatment of hazardous wastes: a novel approach for production-distribution decision optimization in China[J]. International Journal of Disaster Risk Reduction,2019,40:101263. doi: 10.1016/j.ijdrr.2019.101263
    [4] NIU Y Q, WEN L P, GUO X, et al. Co-disposal and reutilization of municipal solid waste and its hazardous incineration fly ash[J]. Environment International,2022,166:107346. doi: 10.1016/j.envint.2022.107346
    [5] WEI X K, XIE F, DONG C L, et al. Safe disposal of hazardous waste incineration fly ash: stabilization/solidification of heavy metals and removal of soluble salts[J]. Journal of Environmental Management,2022,324:116246. doi: 10.1016/j.jenvman.2022.116246
    [6] LOU Y B, JIANG S C, DU B, et al. Leaching morphology characteristics and environmental risk assessment of 13 hazardous trace elements from municipal solid waste incineration fly ash[J]. Fuel,2023,346:128374. doi: 10.1016/j.fuel.2023.128374
    [7] WANG R, XU Q, HE C Y, et al. Analysis of hazardous waste management elements in oil and gas enterprises based on the life-cycle management concept[J]. Sustainability,2023,15(6):5504. doi: 10.3390/su15065504
    [8] 李玉爽, 霍慧敏, 刘海兵, 等. 危险废物城市环境风险评估方法及案例研究[J]. 环境工程学报, 2023, 17(9): 2993-3004.

    LI Y S, HUO H M, LIU H B, et al. Environmental risk assessment method and case study for hazardous waste within the city[J]. Chinese Journal of Environmental Engineering, 2023, 17(9): 2993-3004.
    [9] 郝永利, 胡华龙, 金晶, 等. 论我国危险废物分级管理的紧迫性[J]. 中国环保产业,2016(3):21-23.

    HAO Y L, HU H L, JIN J, et al. On imminence of classiifcation management of hazardous waste in China[J]. China Environmental Protection Industry,2016(3):21-23.
    [10] 黄启飞, 王琪, 董路, 等. 美国危险废物的管理与处理处置[J]. 环境保护科学,2004,30(5):41-42.

    HUANG Q F, WANG Q, DONG L, et al. Management and disposal of hazardous waste in USA[J]. Environmental Protection Science,2004,30(5):41-42.
    [11] 许冠英, 罗庆明, 温雪峰, 等. 美国危险废物分类管理的启示[J]. 环境保护,2010,38(9):74-76.
    [12] 生态环境部. 建设项目环境风险评价技术导则: HJ 169—2018[S]. 北京: 中国环境科学出版社, 2018.
    [13] 生态环境部. 企业突发环境事件风险分级方法[EB/OL]. (2018-03-01)[2023-12-01]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/qt/201802/t20180207_431020.shtml.
    [14] 黄廷伦. 区域突发环境事件风险评估研究: 以成都市X县为例[D]. 成都: 中共四川省委党校, 2018.
    [15] 中国安全生产科学研究院, 中国石油化工股份有限公司青岛安全工程研究院. 危险化学品重大危险源辨识: GB 18218—2018[S]. 北京: 中华人民共和国应急管理部, 2018.
    [16] 刘宏博, 郝雅琼, 吴昊, 等. 铝冶炼行业危险废物产生和利用处置现状与管理对策建议[J]. 环境工程技术学报,2021,11(6):1273-1280.

    LIU H B, HAO Y Q, WU H, et al. Present situation of production, utilization and disposal of hazardous waste in aluminium smelting industry and management countermeasures[J]. Journal of Environmental Engineering Technology,2021,11(6):1273-1280.
    [17] 姚光远, 刘玉强, 刘景财, 等. 我国医药制造业危险废物产生特性及污染防治分析[J]. 环境工程技术学报,2021,11(6):1258-1265.

    YAO G Y, LIU Y Q, LIU J C, et al. Research on the generation properties and pollution control of pharmaceutical manufacturing industry in China[J]. Journal of Environmental Engineering Technology,2021,11(6):1258-1265.
    [18] 迭庆杞, 黄泽春, 杨玉飞, 等. 我国农药工业危险废物产生和污染特性研究[J]. 环境工程技术学报,2021,11(6):1266-1272.

    DIE Q Q, HUANG Z C, YANG Y F, et al. Research on the generation and pollution characteristics of pesticide industrial hazardous wastes in China[J]. Journal of Environmental Engineering Technology,2021,11(6):1266-1272.
    [19] 崔长颢, 刘美佳, 孟棒棒, 等. 涂料行业典型危险废物产生节点与种类及环境管理建议[J]. 环境工程技术学报,2021,11(6):1281-1286.

    CUI C H, LIU M J, MENG B B, et al. Typical hazardous waste generation nodes and types in the coating industry and environmental management countermeasures[J]. Journal of Environmental Engineering Technology,2021,11(6):1281-1286.
    [20] 郝雅琼, 周奇, 杨玉飞, 等. 炼焦行业危险废物精准管控关键问题与对策[J]. 环境工程技术学报,2021,11(5):1004-1011.

    HAO Y Q, ZHOU Q, YANG Y F, et al. Key problems and countermeasures of precise management and control of hazardous waste in coking industry[J]. Journal of Environmental Engineering Technology,2021,11(5):1004-1011.
    [21] 赵彤, 刘祎, 刘美佳, 等. 合成树脂行业固体废物产生节点及环境管理分析[J]. 环境工程技术学报,2021,11(5):1020-1026.

    ZHAO T, LIU Y, LIU M J, et al. Analysis of solid waste generation nodes and environmental management in the synthetic resin industry[J]. Journal of Environmental Engineering Technology,2021,11(5):1020-1026.
    [22] 张丽颖, 黄启飞, 王琪, 等. 危险废物的分级管理研究[J]. 环境科学与技术,2006,29(5):41-42. doi: 10.3969/j.issn.1003-6504.2006.05.017

    ZHANG L Y, HUANG Q F, WANG Q, et al. Classification management of hazardous waste[J]. Environmental Science & Technology,2006,29(5):41-42. doi: 10.3969/j.issn.1003-6504.2006.05.017
    [23] 张丽颖, 黄启飞, 王琪, 等. 危险废物分级管理方法研究[J]. 环境污染与防治,2006,28(1):34-36.

    ZHANG L Y, HUANG Q F, WANG Q, et al. Hazardous waste classification and management[J]. Environmental Pollution & Control,2006,28(1):34-36.
    [24] 国家环境保护总局. 危险废物鉴别标准 腐蚀性鉴别: GB 5085.1—2007[S]. 北京: 中国环境科学出版社, 2007.
    [25] 王海龙, 邢攸美, 李盈盈, 等. 液晶显示面板铝刻蚀废液处理研究进展[J]. 浙江化工,2020,51(4):44-47.

    WANG H L, XING Y M, LI Y Y, et al. Research progress on the treatment of aluminum etching waste liquid for LCD panels[J]. Zhejiang Chemical Industry,2020,51(4):44-47.
    [26] 欧玉静, 王晓梅, 李春雷, 等. N-甲基吡咯烷酮的应用进展[J]. 化工新型材料,2017,45(8):270-272.

    OU Y J, WANG X M, LI C L, et al. Progress on application of N-methyl-2-pyrrolidone[J]. New Chemical Materials,2017,45(8):270-272.
    [27] 吴凡. 高纯度N-甲基吡咯烷酮杂质去除及工艺过程的研究[D]. 上海: 华东理工大学, 2012.
    [28] SINGH A, CHANDEL M K. Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: implications on reclamation and ecological risk[J]. Journal of Environmental Management,2022,304:114206. doi: 10.1016/j.jenvman.2021.114206
    [29] WIECZOREK J, BARAN A, BUBAK A. Mobility, bioaccumulation in plants, and risk assessment of metals in soils[J]. Science of the Total Environment,2023,882:163574. doi: 10.1016/j.scitotenv.2023.163574
    [30] SOMANI M, HÖLZLE I, DATTA M, et al. An investigation on mobility of heavy metals for assessing the reusability of soil-like material reclaimed from mining of municipal solid waste dumpsites[J]. Waste Management,2023,167:113-121. doi: 10.1016/j.wasman.2023.05.028
    [31] 陈川. PCB化学镀铜废水预处理工艺研究[D]. 合肥: 合肥工业大学, 2016.
    [32] 黄金凤. 废电路板元器件金属含量及其浸出特性与环境风险评价[D]. 绵阳: 西南科技大学, 2022.
    [33] 王雨, 庄绪宁, 毛少华, 等. 废LCD面板中有毒有害金属含量及生态风险分析[J]. 环境工程,2020,38(1):117-121.

    WANG Y, ZHUANG X N, MAO S H, et al. Analysis of toxic and harmful metals content and ecological risk in waste LCD panels[J]. Environmental Engineering,2020,38(1):117-121.
    [34] 吴维权, 柯伟奕, 曾细嫦, 等. 深圳市电子行业企业中苯系物的职业健康风险评估[J]. 职业与健康,2022,38(11):1450-1454. doi: 10.3969/j.issn.1004-1257.2022.11.zyyjk202211003

    WU W Q, KE W Y, ZENG X C, et al. Occupational health risk assessment of benzene series in electronics industry enterprises in Shenzhen City[J]. Occupation and Health,2022,38(11):1450-1454. doi: 10.3969/j.issn.1004-1257.2022.11.zyyjk202211003
    [35] 江苏省生态环境厅. 关于印发《江苏省危险废物集中收集体系建设工作方案(试行)》的通知[A/OL]. (2021-11-04)[2023-11-01]. http://sthjt.jiangsu.gov.cn/art/2021/11/4/art_83550_10106346.html.
    [36] 高修歌, 杨丹, 宋昕昊, 等. 硫酸铜和马度米星铵联合暴露对鲫鱼的毒性和效应标记物研究[J]. 生态毒理学报,2021,16(5):285-300.

    GAO X G, YANG D, SONG X H, et al. Toxicity and toxic effect markers of combined exposure of copper sulphate and maduramicin on Carassius auratus[J]. Asian Journal of Ecotoxicology,2021,16(5):285-300. ⊕
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  34
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 录用日期:  2024-02-15
  • 修回日期:  2023-12-12

目录

    /

    返回文章
    返回