Influencing factors and control suggestions for overflow pollution in areas with combined sewer system
-
摘要:
雨污合流制地区汛期溢流成为城市河流返黑返臭的重要原因,溢流污染的有效控制,对改善水环境,提升人民幸福感、获得感与安全感有着重要作用。针对雨污合流制地区汛期溢流污染防控,总结了合流制溢流污染的特点、对水环境质量的影响以及合流制溢流污染的影响因素等内容,分析了我国溢流污染严重区域的分布特征并提出管控建议。研究发现,我国合流制溢流污水呈现出成分复杂、水量水质变化大、初期雨水水质差等特点,且合流制溢流污染会导致城市面源污染,加重地表水质恶化程度。通过分析合流制溢流污染的2个主要影响因素(降水量和管网条件),初步识别出我国溢流污染严重区域主要集中在东部、南部地区,且相关性分析结果表明汛期降水量及管网密度与区域水质存在中等相关关系。为加强合流制地区溢流污染防控,提出要因地制宜制订汛期雨污溢流污染排放管控标准、开展溢流污染控制技术更新行动、加强汛期雨污溢流污染的全过程管理、加强汛期雨污溢流污染治理成效考核等具体建议,以期为有效控制合流制溢流污染,推动水环境质量持续改善提供参考。
Abstract:Overflow pollution during flood season in areas with combined sewer system has become an important reason for the return of urban rivers to blackness and odor, and the effective control of overflow pollution plays an important role in improving the water environment quality and enhancing people's sense of well-being, accessibility and security. In view of the prevention and control of overflow pollution in flood season in areas with combined sewer system, the characteristics of overflow wastewater, the influence on water environment quality, and the influencing factors of overflow pollution were summarized. The distribution characteristics of areas with severe overflow pollution were analyzed and the control suggestions were put forward. The study found that the overflow wastewater from combined sewer systems in China had the characteristics of complex composition, large changes in water quantity and quality, and poor quality of initial rainwater, which caused urban non-point source pollution and led to the deterioration of surface water. By analyzing the countrywide distribution of two main influencing factors of overflow pollution, i.e. precipitation and pipe network conditions, it was preliminarily identified that the areas with serious overflow pollution were mainly distributed in the south and east of China. The correlation analysis showed that there was a moderate correlation between precipitation in flood season, pipe network density and regional water quality. In order to strengthen the prevention and control of overflow pollution in areas with combined sewer system, some specific suggestions were proposed, including developing discharge control standards for overflow pollution according to local conditions, updating technologies for controlling and treating overflow wastewater, enhancing the whole process management of overflow pollution in flood seasons, and strengthening effectiveness assessment of overflow pollution control and treatment, and so on, which hopefully could provide support for effective control of overflow pollution and promote water environmental quality continuously.
-
表 1 汛期溢流污水具体表现及对应特点
Table 1. Concrete performance and corresponding characteristics of overflow sewage in flood season
具体表现 特点 成分复杂 主要包括有机物、营养盐、SS、致病微生物、其他有毒有害物质如重金属、含氯有机物等 水量水质变化大 受降水过程中雨量变化的影响,流量变化大;受气候、降水量、下垫面的影响,污染物的性质和浓度变化大;水质随降水时间的变化呈现先升后降的趋势,初期效应明显,初期雨水的SS、COD是后期的几倍或更高 初期雨水水质差 因外渗水多为非污水,除暴雨初期外,混合污水的整体污染物浓度较低 表 2 2020—2022年31个省(区、市)平均降水量
Table 2. Average precipitation of 31 provinces (autonomous regions, municipalities) in China in 2020-2022
mm 地区 省(区、市) 2020年 2021年 2022年 2020—2022
年平均值华北地区 北京市 560.0 924.0 482.1 655.4 天津市 534.4 984.1 584.7 701.1 河北省 546.7 790.3 508.1 615.0 山西省 561.3 733.0 592.5 628.9 东北地区 内蒙古自治区 311.2 343.7 271.8 308.9 辽宁省 748.0 933.0 914.6 865.2 吉林省 769.1 710.4 820.7 766.7 黑龙江省 723.1 647.7 578.8 649.9 华东地区 上海市 1 554.6 1 474.5 1 072.8 1 367.3 江苏省 1 236.0 1 190.3 813.3 1 079.9 浙江省 1701.0 1992.5 1567.0 1 753.5 安徽省 1 665.6 1 291.6 979.8 1 312.3 福建省 1 439.1 1 477.1 1 712.4 1 542.9 江西省 1 853.1 1 587.4 1 599.3 1 679.9 山东省 838.1 979.9 878.0 898.7 华中地区 河南省 874.3 1 127.7 621.7 874.6 湖北省 1 642.6 1269.0 987.2 1 299.6 湖南省 1 726.8 1 490.1 1 305.3 1 507.4 华南地区 广东省 1 574.1 1 420.9 2 114.3 1 703.1 广西壮族自治区 1 669.4 1 383.1 1 696.7 1 583.1 海南省 1641.1 1 881.4 2 068.6 1 863.7 西南地区 重庆市 1 435.6 1 404.3 945.2 1261.7 四川省 1 055.0 1 004.7 842.7 967.5 贵州省 1 417.4 1 227.3 1 016.6 1 220.4 云南省 1 157.2 1 123.9 1 173.8 1 151.6 西藏自治区 600.6 578.7 538.7 572.7 西北地区 陕西省 690.5 954.6 671.1 772.1 甘肃省 334.4 288.5 253.6 292.2 青海省 367.1 356.2 341.1 354.8 宁夏回族自治区 309.7 2735.0 253.7 279.0 新疆维吾尔自治区 141.7 161.7 141.3 148.2 表 3 汛期降水量及管网条件与区域水质相关性分析结果
Table 3. Correlation analysis results of precipitation, pipe network conditions and regional water quality in flood seasons
指标 2022年管网密度 2022年降水量 2021年降水量 2020年降水量 sig 相关系数 sig 相关系数 sig 相关系数 sig 相关系数 2022年汛期污染强度 0.485 0.133 0.026 0.400 劣Ⅴ类水质断面比例 0.013 −0.449 0.025 0.403 0.045 0.348 0.030 0.389 -
[1] AGHDAM E, MOHANDES S R, ZAYED T. Evaluating the sensory and health impacts of exposure to sewer overflows on urban population[J]. Journal of Cleaner Production,2023,413:137498. doi: 10.1016/j.jclepro.2023.137498 [2] NICKEL J P, FUCHS S. Micropollutant emissions from combined sewer overflows[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research,2019,80(11):2179-2190. doi: 10.2166/wst.2020.035 [3] FU X, GODDARD H, WANG X H, et al. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs)[J]. Journal of Environmental Management,2019,236:571-580. doi: 10.1016/j.jenvman.2018.12.089 [4] YU L, YAN Y L, PAN X Y, et al. Research on the comprehensive regulation method of combined sewer overflow based on synchronous monitoring: a case study[J]. Water,2022,14(19):3067. doi: 10.3390/w14193067 [5] WANG J, LIU G H, WANG J Y, et al. Current status, existent problems, and coping strategy of urban drainage pipeline network in China[J]. Environmental Science and Pollution Research International,2021,28(32):43035-43049. doi: 10.1007/s11356-021-14802-9 [6] REYES-SILVA J, BANGURA E, HELM B, et al. The role of sewer network structure on the occurrence and magnitude of combined sewer overflows (CSOs)[J]. Water,2020,12(10):2675. doi: 10.3390/w12102675 [7] OWOLABI T A, MOHANDES S R, ZAYED T. Investigating the impact of sewer overflow on the environment: a comprehensive literature review paper[J]. Journal of Environmental Management,2022,301:113810. doi: 10.1016/j.jenvman.2021.113810 [8] 董利鹏, 王芳芳, 王晓玲. 合流制溢流污染控制技术研究[J]. 煤炭与化工,2022,45(11):154-157.DONG L P, WANG F F, WANG X L. Study on pollution control technology of sewage overflow in combined drainage system[J]. Coal and Chemical Industry,2022,45(11):154-157. [9] LI Y P, ZHOU Y X, WANG H Y, et al. Characterization and sources apportionment of overflow pollution in urban separate stormwater systems inappropriately connected with sewage[J]. Journal of Environmental Management,2022,303:114231. doi: 10.1016/j.jenvman.2021.114231 [10] 生态环境部. 2020年12月和1—12月全国地表水、环境空气质量状况[EB/OL]. [2024-02-03]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202101/t20210115_817499.html. [11] 生态环境部. 2021年12月和1—12月全国地表水、环境空气质量状况[EB/OL]. [2024-02-03]. https://www.mee.gov.cn/ywdt/xwfb/202201/t20220131_968703.shtml. [12] 生态环境部. 2022年第四季度和1—12月全国地表水环境质量状况[EB/OL]. [2024-02-03]. https://www.mee.gov.cn/ywdt/xwfb/202301/t20230129_1014067.shtml. [13] 孙世辉, 王寒涛, 凃洋. 水环境治理过程中的控制断面水质恶化原因分析[J]. 水电与新能源,2018,32(11):74-78.SUN S H, WANG H T, TU Y. Causes of the water quality deterioration in control sections in water environment treatment[J]. Hydropower and New Energy,2018,32(11):74-78. [14] 赵振东, 刘健, 崔华峰, 等. 厂网一体运行视角下汛期入河污染物监测分析及控制策略研究[J]. 给水排水,2023,49(8):44-51.ZHAO Z D, LIU J, CUI H F, et al. Monitoring analysis and control strategies of pollutants discharged into rivers during rainfall from the perspective of integrated operation of drainage system[J]. Water & Wastewater Engineering,2023,49(8):44-51. [15] 李白, 刘守根. 基于污染物通量的眉山市彭山区毛河桥江桥断面污染源权重分析[J]. 皮革制作与环保科技,2022,3(10):55-59.LI B, LIU S G. Analysis of pollution source weights of Maohe bridge section in Pengshan District, Meishan City based on pollutant flux[J]. Leather Manufacture and Environmental Technology,2022,3(10):55-59. [16] 生态环境部. 生态环境部指导各地开展汛期污染强度分析 推动解决突出水环境问题[EB/OL]. [2024-02-03]. https://www.mee.gov.cn/ywdt/hjywnews/202202/t20220221_969588.shtml. [17] 生态环境部办公厅. 关于2022年上半年全国水环境情况通报的函: 环办水体函〔2022〕338号[A/OL]. [2024-02-03]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202208/t20220831_992875.html. [18] 徐海波, 王凯, 凌虹, 等. 江苏省主汛期水体水质变化特征及污染防治对策研究[J]. 环境污染与防治,2022,44(3):350-355.XU H B, WANG K, LING H, et al. Research on the characteristics of water quality changes in the main flood season in Jiangsu Province and the countermeasures for pollution control[J]. Environmental Pollution & Control,2022,44(3):350-355. [19] 蔡正君, 黄福昌, 汤文浩. 长江中游某县城水环境综合治理模式探究[J]. 水利技术监督,2023,31(8):85-87. doi: 10.3969/j.issn.1008-1305.2023.08.025CAI Z J, HUANG F C, TANG W H. Study on the comprehensive treatment model of water environment in a county in a county along the middle reaches of Yangtze River[J]. Technical Supervision in Water Resources,2023,31(8):85-87. doi: 10.3969/j.issn.1008-1305.2023.08.025 [20] 徐一茗. 合流制管道溢流的影响因素及其污染治理措施[J]. 山西建筑,2010,36(34):170-172. doi: 10.3969/j.issn.1009-6825.2010.34.105XU Y M. Influencing factors and pollution control measures on combined sewer overflows[J]. Shanxi Architecture,2010,36(34):170-172. doi: 10.3969/j.issn.1009-6825.2010.34.105 [21] 李永真, 孙德智, 李虹, 等. 长江流域洞庭湖片区典型城市水环境问题解析与治理对策[J]. 环境工程技术学报,2023,13(1):19-26. doi: 10.12153/j.issn.1674-991X.20210708LI Y Z, SUN D Z, LI H, et al. Analysis and governance countermeasures study of water environment problems in typical cities around Dongting Lake in the Yangtze River Basin[J]. Journal of Environmental Engineering Technology,2023,13(1):19-26. doi: 10.12153/j.issn.1674-991X.20210708 [22] YU D W, DIAN L, HAI Y L, et al. Effect of rainfall characteristics on the sewer sediment, hydrograph, and pollutant discharge of combined sewer overflow[J]. Journal of Environmental Management,2022,303:114268. doi: 10.1016/j.jenvman.2021.114268 [23] 郑岩杭, 李翠梅, 黄瑜琪. 合流污水系统最优截流倍数研究[J]. 水利水电技术,2020,51(10):173-179.ZHENG Y H, LI C M, HUANG Y Q. Study on optimal interception ratio of combined sewerage system[J]. Water Resources and Hydropower Engineering,2020,51(10):173-179. [24] 王峥, 朱洪涛, 孙德智. 长江干流江苏段及环太湖区域典型城市水生态环境问题解析及控制对策[J]. 环境工程技术学报,2022,12(4):1064-1074. doi: 10.12153/j.issn.1674-991X.20210704WANG Z, ZHU H T, SUN D Z. Analysis and control countermeasures of water eco-environment problems in typical cities in Jiangsu Province reach of the Yangtze River and the area around Taihu Lake[J]. Journal of Environmental Engineering Technology,2022,12(4):1064-1074. doi: 10.12153/j.issn.1674-991X.20210704 [25] CHEN Y X, SHI X, JIN X, et al. Characteristics of overflow pollution from combined sewer sediment: formation, contribution and regulation[J]. Chemosphere,2022,298:134254. doi: 10.1016/j.chemosphere.2022.134254 [26] 赵志超, 黄晓敏, 尹海龙, 等. 雨水管网混接入渗诊断技术研究进展[J]. 环境工程技术学报,2024,14(1):278-288. doi: 10.12153/j.issn.1674-991X.20230359ZHAO Z C, HUANG X M, YIN H L, et al. Review on diagnostic technologies of illicit discharge and groundwater infiltration in the storm drainage network[J]. Journal of Environmental Engineering Technology,2024,14(1):278-288. doi: 10.12153/j.issn.1674-991X.20230359 [27] 赵杨, 车伍, 杨正. 中国城市合流制及相关排水系统的主要特征分析[J]. 中国给水排水,2020,36(14):18-28.ZHAO Y, CHE W, YANG Z. Analysis of characteristics of China urban combined sewer system and related other sewer systems[J]. China Water & Wastewater,2020,36(14):18-28. [28] 郑锦涛, 马涛, 刘九夫, 等. 基于RDA-REM模型的我国再生水开发利用潜力[J]. 环境科学,2021,42(6):2758-2768.ZHENG J T, MA T, LIU J F, et al. China’s reuse water development and utilization potential based on the RDA-REM model[J]. Environmental Science,2021,42(6):2758-2768. [29] 闫攀, 赵杨, 车伍, 等. 中国城市合流制溢流控制的系统衔接关系剖析[J]. 中国给水排水,2020,36(14):37-45.YAN P, ZHAO Y, CHE W, et al. Analysis of the conjunctive relationship of urban combined sewer overflow control system in China[J]. China Water & Wastewater,2020,36(14):37-45. [30] 曾令武, 王峥, 朱洪涛, 等. 长江流域赣皖区域城市水生态环境特征解析及整治对策[J]. 环境工程技术学报,2023,13(1):36-46.ZENG L W, WANG Z, ZHU H T, et al. Analysis of the characteristics of water eco-environment and comprehensive countermeasures for cities in Jiangxi and Anhui Region of the Yangtze River Basin[J]. Journal of Environmental Engineering Technology,2023,13(1):36-46. [31] 李云青, 李海燕, 谭朝洪, 等. 城市雨污合流制排水管道降雨径流污染特征研究[J]. 人民黄河,2023,45(7):109-115.LI Y Q, LI H Y, TAN C H, et al. Study on the rainfall runoff pollution characteristics of urban rainwater and sewage combined drainage system[J]. Yellow River,2023,45(7):109-115. [32] 丁亚楠, 王建国, 汤露露. 生命周期角度下地区性差异对城市污水处理的影响[J]. 四川环境,2019,38(6):143-150.DING Y N, WANG J G, TANG L L. The impact of regional differences on wastewater treatment plant from the perspective of life cycle[J]. Sichuan Environment,2019,38(6):143-150. [33] 吴皓辉. 城市合流制截污管网溢流污水防控技术分析[J]. 绿色环保建材,2019(11):73. [34] 肖思琪. 基于污染物初期冲刷效应差异的CSOs调蓄池布局优化研究[D]. 天津: 天津大学, 2021. [35] 杨逢乐, 赵磊. 合流制排水系统降雨径流污染物特征及初期冲刷效应[J]. 生态环境,2007,16(6):1627-1632.YANG F L, ZHAO L. Pollutant characteristics and first flush effect of runoff in combined sewer system[J]. Ecology and Environment,2007,16(6):1627-1632. [36] 水利部. 2020年中国水资源公报[A/OL]. [2024-02-03]. http://www.mwr.gov.cn/sj/tjgb/szygb/202107/t20210709_1528208.html. [37] 水利部. 2021年中国水资源公报[A/OL]. [2024-02-03]. http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html. [38] 水利部. 2022年中国水资源公报[A/OL]. [2024-02-03]. http://www.mwr.gov.cn/sj/tjgb/szygb/202306/t20230630_1672556.html. [39] 付朝晖, 赵雄, 陈诗浩, 等. 珠海市城中村合流制排水系统的溢流污染控制策略[J]. 中国给水排水,2022,38(3):105-111.FU Z H, ZHAO X, CHEN S H, et al. Strategy for combined sewer overflow pollution control in urban villages of Zhuhai City[J]. China Water & Wastewater,2022,38(3):105-111. [40] 住房和城乡建设部. 2022年中国城乡建设统计年鉴[M]. 北京: 中国统计出版社, 2022. [41] 张妍妍, 王峥, 邱斌, 等. 长江流域湖北片区典型城市水生态环境问题解析及整治对策[J]. 环境工程技术学报,2023,13(1):27-35.ZHANG Y Y, WANG Z, QIU B, et al. Analysis of water eco-environmental problems and related countermeasures for typical cities in Hubei Region of the Yangtze River Basin[J]. Journal of Environmental Engineering Technology,2023,13(1):27-35. [42] 生态环境部办公厅. 关于2020年上半年水环境目标任务完成情况的函: 环办水体函〔2020〕412号[A/OL]. [2024-02-03]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202008/t20200807_793109.html. [43] 生态环境部办公厅. 关于2021年1—9月全国水环境情况通报的函: 环办水体函〔2021〕501号[A/OL]. [2024-02-03]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202111/t20211102_958807.html. [44] 国家统计局. 2020年中国统计年鉴[M]. 北京: 中国统计出版社, 2020. [45] 界面新闻. 中央生态环保督察: 江西南昌生活污水管网建设改造滞后, 污水直排问题整治不力[EB/OL]. (2021-05-06)[2024-02-03]. https://www.jiemian.com/article/6053839.html. [46] US EPA. Combined sewer overflow (CSO) control policy[R/OL]. [2024-02-03]. https://www.epa.gov/npdes/combined-sewer-overflows-csos. [47] 杨正, 赵杨, 车伍, 等. 典型发达国家合流制溢流控制的分析与比较[J]. 中国给水排水,2020,36(14):29-36.YANG Z, ZHAO Y, CHE W, et al. Analysis and comparison of combined sewer overflow (CSO) control in representative developed countries[J]. China Water & Wastewater,2020,36(14):29-36. [48] 易莹, 葛乐乐, 周艳伟, 等. 日本合流制溢流污染防治的经验和思考[J]. 工业用水与废水,2022,53(2):46-49. doi: 10.3969/j.issn.1009-2455.2022.02.009YI Y, GE L L, ZHOU Y W, et al. Experience and thinking on the prevention and control of combined sewer overflow in Japan[J]. Industrial Water & Wastewater,2022,53(2):46-49. doi: 10.3969/j.issn.1009-2455.2022.02.009 [49] 杨正, 车伍, 赵杨. 城市“合改分” 与合流制溢流控制的总体策略与科学决策[J]. 中国给水排水,2020,36(14):46-55.YANG Z, CHE W, ZHAO Y. General strategy and scientific decision-making of urban "combined sewer separation" and CSO control[J]. China Water & Wastewater,2020,36(14):46-55. [50] 吴志强, 栗玉鸿, 侯爱月, 等. 南方城市污水提质增效方案与实践: 以漳州市为例[J]. 城市道桥与防洪,2022(2):122-126.WU Z Q, LI Y H, HOU A Y, et al. Scheme and practice of improving quality and efficiency of urban sewage in Zhangzhou City of Southern China[J]. Urban Roads Bridges & Flood Control,2022(2):122-126. [51] 史秀芳, 卢亚静, 潘兴瑶, 等. 合流制溢流污染控制技术、管理与政策研究进展[J]. 给水排水,2020,56(增刊1):740-747. [52] 城市排水系统溢流污染控制技术规程: DB 4201/T 666—2022[S/OL]. [2024-02-04]. https://www.doc88.com/p-94659778848431.html. [53] 重庆市住房和城乡建设委员会. 城镇排水溢流排口污染物控制技术标准(征求意见稿)[S/OL]. [2024-02-03]. http://zfcxjw.cq.gov.cn/zwxx_166/gsgg/202011/t20201110_8447768.html. ◇