Characteristics of plant communities in different industrial sites in Nandan Antimony Mining Area
-
摘要:
研究锑矿区不同工业场地植被群落特征及其影响因素,对于锑矿区的生态恢复和植被重建具有重要意义。以南丹县五一锑矿各工业场地植物群落为研究对象,并选择锑矿区周边未被破坏的植物群落作为对照区,探究锑矿区不同工业场地(采矿区、冶炼区、尾矿区)植物群落物种组成与多样性及其与土壤因子的关系。结果显示:锑矿区各工业场地群落组成以菊科(Compositae)、禾本科(Poaceae)为主,2科植物在锑矿区工业场地内为群落建群种和优势种。对照区与各工业场地植物群落组成差异显著(P<0.05),冶炼区植物群落组成与采矿区和尾矿区差异显著(P<0.05)。各工业场地优势种的重要值及Margalef指数、Shannon指数均表现为对照区>采矿区>尾矿区>冶炼区(P<0.05),表明冶炼区群落复杂程度最低,群落结构最为简单,生态退化形势较为严重。矿区植物多样性与土壤含水率、pH及有机质、总钾、总氮含量呈正相关,与总磷含量、锑砷含量呈负相关,总锑、总砷和土壤含水率是影响锑矿各工业场地物种多样性的重要限制因子;重金属含量对尾矿区和采矿区植物群落多样性影响最强,土壤含水率对冶炼区影响最强。研究表明,工业场地植物物种数量下降,植被多样性指数降低,采矿等工业活动对矿区生态环境构成一定破坏和干扰,矿区植被恢复方案应考虑矿区场地类型和关键环境变量。
Abstract:It is of great significance to study the characteristics of vegetation communities and their influencing factors in different industrial sites in antimony mining areas for ecological restoration and vegetation reconstruction. The plant communities of various industrial sites of Wuyi antimony mine in Nandan County were taken as the research object, and the undamaged plant communities around the antimony mining area were selected as the control area, to explore the species composition and diversity of plant communities in different industrial sites (mining area, smelting area and tailings area) in the antimony mining area and their relationship with soil factors. The results showed that the community composition of each industrial site of antimony ore was dominated by Compositae and Poaceae, and the two families of plants were the community-building species and dominant species in the industrial site of the antimony mining area. There were significant differences in plant community composition between the control area and each industrial site (P<0.05), and the plant community composition in the smelting area was significantly different from that in the mining area and tailings area (P<0.05). The important values of dominant species, Margalef index and Shannon index of each industrial site were shown as control area > mining area> tailings area > smelting area (P<0.05), indicating that the smelting area had the lowest community complexity and the simplest community structure, and the ecological degradation situation was more serious. Plant diversity in the mining area was positively correlated with organic matter, soil moisture content, pH, total potassium and total nitrogen content, and negatively correlated with total phosphorus, and antimony and arsenic concentrations. Total antimony, total arsenic and soil moisture content were important limiting factors affecting the species diversity of various industrial sites in antimony mines. Heavy metal concentration had the strongest effect on plant community diversity in tailings area and mining area, and soil moisture content had the strongest effect on smelting area. The results show that the number of plant species in industrial sites is decreasing, the vegetation diversity index is decreasing, and industrial activities such as mining have caused great damage and interference to the ecological environment of mining areas. The type of mining site and key environmental variables should be considered in the vegetation restoration plan for mining areas.
-
表 1 不同工业场地区域概况
Table 1. Overview of different industrial site areas
工业场地 经纬度 样地面积/m2 植被类型 采矿区 107°36′48″E,
24°49′53″N15 630 以草本植物为主,常见植物为五节芒(Miscanthus floridulus)、
鬼针草(Bidens pilosa)、葛(Pueraria lobata)冶炼区 107°40′07″E,24°51′08″N 246 016 由人工种植的绿化乔灌和自然生长的草本植物组成,乔灌主要为高山榕(Ficus altissima)、羊蹄甲(Bauhinia purpurea)、夹竹桃(Nerium indicum)、鹅掌柴(Schefflera heptaphylla),
草本植物主要为鬼针草、狗牙根(Cynodon dactylon)尾矿区 107°38′05″E,24°53′34″N 75 605 以草本为主,仅有山黄麻(Trema tomentosa)、盐麸木(Rhus chinensis var. chinensis)、马桑(Coriaria nepalensis)等少量乔灌木,主要草本为五节芒、凤尾蕨(Pteris cretica var. nervosa)、
节节草(Equisetum ramosissimum)对照区 107°37′57″E,
24°58′49″N为自然植被,主要以枫香树(Liquidambar formosana)、苦楝(Melia azedarach)、
盐麸木等乔木为主,草本多为蕨类植物表 2 不同工业场地各层次重要值排名前5的物种
Table 2. Top 5 species with important values at different levels in different industrial sites
分层 采矿区 冶炼区 尾矿区 对照区 物种 IV 物种 IV 物种 IV 物种 IV 乔木层 盐麸木 100 高山榕 38.11 山黄麻 33.33 枫香树 36.83 羊蹄甲 26.13 盐麸木 25.51 苦楝 13.06 印度榕 22.84 泡桐 21.86 盐麸木 11.19 柳杉 12.91 苦楝 19.29 栓皮栎 11.15 山黄麻 10.48 灌木层 醉鱼草 50 夹竹桃 53.20 马桑 89.66 野蔷薇 27.49 马桑 50 鹅掌柴 36.83 夹竹桃 10.34 鹅掌柴 23.67 红花檵木 9.97 天竺桂 14.21 山茶 12.51 桂花 11.30 草本层 五节芒 28.72 鬼针草 53.28 五节芒 44.01 芒萁 15.81 鬼针草 19.78 狗牙根 40.10 凤尾蕨 13.54 海金沙 13.39 葛 11.63 五节芒 4.68 节节草 11.23 肾蕨 9.08 小蓬草 6.21 钻叶紫菀 1.94 类芦 6.69 金星蕨 8.36 薹草 5.18 粽叶芦 5.96 鳞毛蕨 8.26 注:植物物种对应的拉丁名为印度榕(Ficus elastica)、柳杉(Cryptomeria fortunei)、泡桐(Paulownia fortunei)、栓皮栎(Quercus variabilis)、醉鱼草(Buddleja lindleyana)、红花檵木(Loropetalum chinense f. rubrum)、野蔷薇(Rosa multiflora var. multiflora)、山茶(Camellia japonica)、桂花(Osmanthus fragrans)、天竺桂(Cinnamomum japonicum)、小蓬草(Conyza canadensis)、薹草(Carex Retz.)、钻叶紫菀(Aster subulatus)、类芦(Neyraudia reynaudiana)、粽叶芦(Thysanolaena agrostis)、芒萁(Dicranopteris dichotoma)、海金沙(Lygodium japonicum)、肾蕨(Nephrolepis auriculata)、金星蕨(Parathelypteris glanduligera)、鳞毛蕨(Dryopteris polylepis)。 表 3 组间差异分析
Table 3. Analysis of differences between groups
样地类型 距离计算方式 R P 采矿区/冶炼区 Bray-Curtis 0.41 0.025 采矿区/尾矿区 Bray-Curtis 0.17 0.127 采矿区/对照区 Bray-Curtis 0.96 0.041 冶炼区/尾矿区 Bray-Curtis 0.76 0.003 冶炼区/对照区 Bray-Curtis 0.94 0.032 尾矿区/对照区 Bray-Curtis 0.78 0.005 注:R可以反映组间与组内比较的差异程度,其取值为(−1,1);R>0,说明组间差异大于组内差异,即组间差异显著;R<0,说明组内差异大于组间差异;R的绝对值越大表明相对差异越大。P越低表明这种差异检验结果越显著,一般以0.05为显著性水平界限。 -
[1] HE M C, WANG X Q, WU F C, et al. Antimony pollution in China[J]. Science of the Total Environment,2012,421/422:41-50. doi: 10.1016/j.scitotenv.2011.06.009 [2] 何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展,2004,16(1):131-135. doi: 10.3321/j.issn:1005-281X.2004.01.020HE M C, WAN H Y. Distribution, speciation, toxicity and bioavailability of antimony in the environment[J]. Progress In Chemistry,2004,16(1):131-135. doi: 10.3321/j.issn:1005-281X.2004.01.020 [3] 毛宽, 张国平, 王庆云, 等. 锑矿区冶炼废渣Sb和As的浸出特征:pH的影响[J]. 地球与环境,2023,51(1):102-107.MAO K, ZHANG G P, WANG Q Y, et al. Leaching characteristics of Sb and As from smelting slag in antimony mining area: influence of pH[J]. Earth and Environment,2023,51(1):102-107. [4] HE M C, WANG N N, LONG X J, et al. Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences (China),2019,75:14-39. doi: 10.1016/j.jes.2018.05.023 [5] NISHAD P A, BHASKARAPILLAI A. Antimony, a pollutant of emerging concern: a review on industrial sources and remediation technologies[J]. Chemosphere,2021,277:130252. doi: 10.1016/j.chemosphere.2021.130252 [6] 杜忠毓, 王剑武, 邢文黎, 等. 喀斯特锑矿植被恢复区植物多样性及群落稳定性[J]. 环境科学研究,2023,36(1):188-197.DU Z Y, WANG J W, XING W L, et al. Plant species diversity and community stability in vegetation restoration area of Karst antimony mining sites in Guizhou, China[J]. Research of Environmental Sciences,2023,36(1):188-197. [7] 韩煜, 王琦, 赵伟, 等. 草原区露天煤矿开采对土壤性质和植物群落的影响[J]. 生态学杂志,2019,38(11):3425-3433.HAN Y, WANG Q, ZHAO W, et al. Effects of opencast coal mining on soil properties and plant communities of grassland[J]. Chinese Journal of Ecology,2019,38(11):3425-3433. [8] 汪新星, 胡春华, 郭飞. 甘肃陇南锑矿泄露区土壤重金属污染及风险评价[J]. 南昌大学学报(理科版),2021,45(2):189-195.WANG X X, HU C H, GUO F. Pollution and risk assessment of heavy metals in soil of antimony mine leakage area in Longnan, Gansu Province[J]. Journal of Nanchang University (Natural Science),2021,45(2):189-195. [9] 李继宁, 魏源, 赵龙, 等. 锑矿区土壤重金属生物可给性及人体健康风险评估[J]. 环境工程技术学报,2014,4(5):412-420. doi: 10.3969/j.issn.1674-991X.2014.05.066LI J N, WEI Y, ZHAO L, et al. Bioaccessibility and human health risk assessment of heavy metals in soils of antimony mine area[J]. Journal of Environmental Engineering Technology,2014,4(5):412-420. doi: 10.3969/j.issn.1674-991X.2014.05.066 [10] BOLAN N, KUMAR M, SINGH E, et al. Antimony contamination and its risk management in complex environmental settings: a review[J]. Environment International,2022,158:106908. doi: 10.1016/j.envint.2021.106908 [11] BORRELLI P, PANAGOS P, BALLABIO C, et al. Towards a Pan-European assessment of land susceptibility to wind erosion[J]. Land Degradation & Development,2016,27(4):1093-1105. [12] HOU X Y, LIU S L, CHENG F Y, et al. Vegetation community composition along disturbance gradients of four typical open-pit mines in Yunnan Province of Southwest China[J]. Land Degradation & Development,2019,30(4):437-447. [13] LEI K, PAN H Y, LIN C Y. A landscape approach towards ecological restoration and sustainable development of mining areas[J]. Ecological Engineering,2016,90:320-325. doi: 10.1016/j.ecoleng.2016.01.080 [14] 李斌, 童方平, 陈月华, 等. 冷水江锑矿区植物群落现状及特征[J]. 中国农学通报,2010,26(8):284-289.LI B, TONG F P, CHEN Y H, et al. Study on the flora status and features in antimony mine of Len-Shuijiang City[J]. Chinese Agricultural Science Bulletin,2010,26(8):284-289. [15] 雷冬梅, 徐晓勇, 胡斌, 等. 矿区废弃地生态环境及复合生态系统特征分析[C]//中国自然资源学会土地资源研究专业委员会,中国地理学会农业地理与乡村发展专业委员会. 中国山区土地资源开发利用与人地协调发展研究. 中国科学技术出版社, 2010: 355-359. [16] 许喆, 米文宝, 米楠, 等. 工业运输活动对周边荒漠草原植物多样性与土壤性状的影响[J]. 生态学报,2023,43(12):5060-5071.XU Z, MI W B, MI N, et al. Effects of industrial transportation activities on plant diversity and soil properties in the surrounding desert steppe[J]. Acta Ecologica Sinica,2023,43(12):5060-5071. [17] 项萌, 张国平, 李玲, 等. 广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J]. 环境科学,2012,33(1):266-272.XIANG M, ZHANG G P, LI L, et al. Characteristics of heavy metals in soil profile and pore water around Hechi antimony-lead smelter, Guangxi, China[J]. Environmental Science,2012,33(1):266-272. [18] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性,2009,17(6):533-548. doi: 10.3724/SP.J.1003.2009.09253FANG J Y, WANG X P, SHEN Z H, et al. Methods and protocols for plant community inventory[J]. Biodiversity Science,2009,17(6):533-548. doi: 10.3724/SP.J.1003.2009.09253 [19] 马克平, 刘玉明. 生物群落多样性的测度方法 Ⅰα多样性的测度方法(下)[J]. 生物多样性,1994,2(4):38-43. [20] BAO S. Soil agro-chemistry analysis[M]. 3rd ed. China Agriculture Press, 2005. [21] 肖涵, 韩志伟, 熊佳, 等. 贵州晴隆锑矿尾砂中锑和砷的生物有效性及生态风险评价[J]. 环境工程,2022,40(5):123-132.XIAO H, HAN Z W, XIONG J, et al. Bioavailability and ecological risk assessment of sb and as in tailings of Qinglong antimony mine in Guizhou[J]. Environmental Engineering,2022,40(5):123-132. [22] LIU L, CHEN L Q, TANG J X. Present situation and future prospects of geologic environment issues in mines in China[J]. Disaster Advances,2010,3(4):563-566. [23] YAN A, WANG Y M, TAN S N, et al. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land[J]. Frontiers in Plant Science,2020,11:359. doi: 10.3389/fpls.2020.00359 [24] 春风, 赵萌莉, 张继权, 等. 内蒙古巴音华煤矿区自然定居植物群落物种多样性变化分析[J]. 生态环境学报,2016,25(7):1211-1216.CHUN F, ZHAO M L, ZHANG J Q, et al. Analysis on diversity changes in naturally colonized plant communities of the Bayinhua mining area in Inner Mongolia[J]. Ecology and Environmental Sciences,2016,25(7):1211-1216. [25] 李剑锋, 冯李霄, 陈希清, 等. 大义山东南部土壤重金属分布特征及其风险评价[J]. 环境工程技术学报,2023,13(1):287-294. doi: 10.12153/j.issn.1674-991X.20210658LI J F, FENG L X, CHEN X Q, et al. Heavy metal distribution characteristics of soils in southeastern Dayi Mountain and its risk evaluation[J]. Journal of Environmental Engineering Technology,2023,13(1):287-294. doi: 10.12153/j.issn.1674-991X.20210658 [26] GUITTAR J, GOLDBERG D, KLANDERUD K, et al. Can trait patterns along gradients predict plant community responses to climate change[J]. Ecology,2016,97(10):2791-2801. doi: 10.1002/ecy.1500 [27] ANAWAR H M, CANHA N, SANTA-REGINA I, et al. Adaptation, tolerance, and evolution of plant species in a pyrite mine in response to contamination level and properties of mine tailings: sustainable rehabilitation[J]. Journal of Soils and Sediments,2013,13(4):730-741. doi: 10.1007/s11368-012-0641-7 [28] 李贵, 童方平, 刘振华, 等. 衡阳水口山铅锌矿区植被调查及物种多样性分析[J]. 中国农学通报,2014,30(13):66-70. doi: 10.11924/j.issn.1000-6850.2013-2829LI G, TONG F P, LIU Z H, et al. Study on plant investigate and species diversity of Shuikoushan Pb-Zn mining area in Hengyang[J]. Chinese Agricultural Science Bulletin,2014,30(13):66-70. doi: 10.11924/j.issn.1000-6850.2013-2829 [29] 周涛, 苏正安, 何周窈, 等. 不同恢复年限矿山排土场植物群落特征[J]. 草业科学,2019,36(6):1508-1517.ZHOU T, SU Z A, HE Z Y, et al. Vegetation community characteristics of mine dumps under different recovery years[J]. Pratacultural Science,2019,36(6):1508-1517. [30] HUANG L, ZHANG P, HU Y G, et al. Vegetation and soil restoration in refuse dumps from open pit coal mines[J]. Ecological Engineering,2016,94:638-646. doi: 10.1016/j.ecoleng.2016.06.108 [31] PAJĄK M, BŁOŃSKA E, SZOSTAK M, et al. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals[J]. Water, Air, and Soil Pollution,2018,229(12):392. doi: 10.1007/s11270-018-4040-6 [32] WOCH M W, KAPUSTA P, STEFANOWICZ A M. Variation in dry grassland communities along a heavy metals gradient[J]. Ecotoxicology,2016,25(1):80-90. doi: 10.1007/s10646-015-1569-7 [33] 殷志遥, 和君强, 刘代欢, 等. 我国土壤锑污染特征研究进展及其富集植物的应用前景初探[J]. 农业资源与环境学报,2018,35(3):199-207.YIN Z Y, HE J Q, LIU D H, et al. Research progress on characteristics of soil antimony pollution in China and the preliminary exploration about application prospect of antimony accumulator plants[J]. Journal of Agricultural Resources and Environment,2018,35(3):199-207. [34] 周林, 梁亚楠, 武艳芳, 等. 重金属富集植物研究进展及其园林应用分析[J]. 长江大学学报(自科版),2017,14(2):52-58.ZHOU L, LIANG Y N, WU Y F, et al. Research progress and landscape application analysis of accumulators[J]. Journal of Yangtze University (Natural Science Edition),2017,14(2):52-58. [35] JANA U, CHASSANY V, BERTRAND G, et al. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation[J]. Journal of Environmental Management,2012,110:188-193. doi: 10.1016/j.jenvman.2012.06.007 [36] 库文珍, 赵运林, 雷存喜, 等. 锑矿区土壤重金属污染及优势植物对重金属的富集特征[J]. 环境工程学报,2012,6(10):3774-3780.KU W Z, ZHAO Y L, LEI C X, et al. Heavy metal pollution in soils and characteristics of heavy metal accumulation of dominant plants in antimony mining area[J]. Chinese Journal of Environmental Engineering,2012,6(10):3774-3780. [37] 常香玲. 河南某矿区周边优势植物重金属富集特征及其药用健康风险评价[J]. 环境工程技术学报,2023,13(6):2204-2212. doi: 10.12153/j.issn.1674-991X.20221252CHANG X L. Heavy metal enrichment characteristics and medicinal health risk assessment of dominant plants around a mining area in Henan Province[J]. Journal of Environmental Engineering Technology,2023,13(6):2204-2212. doi: 10.12153/j.issn.1674-991X.20221252 [38] ZHANG Y X, SONG B, ZHU L L, et al. Evaluation of the metal (loid)s phytoextraction potential of wild plants grown in three antimony mines in Southern China[J]. International Journal of Phytoremediation,2021,23(8):781-790. doi: 10.1080/15226514.2020.1857685 [39] ILYAS M, SHAH S, LAI Y W, et al. Leaf functional traits of invasive grasses conferring high-cadmium adaptation over natives[J]. Frontiers in Plant Science,2022,13:869072. doi: 10.3389/fpls.2022.869072 [40] 林杨, 文仕知, 王德明. 湘潭锰矿3种不同生境植物群落结构及数量特征[J]. 中南林业科技大学学报,2014,34(12):102-109. doi: 10.3969/j.issn.1673-923X.2014.12.020LIN Y, WEN S Z, WANG D M. Analysis on community structure and quantitative characteristics of three kinds of plant communities in three different habitats in Xiangtan manganese area[J]. Journal of Central South University of Forestry & Technology,2014,34(12):102-109. doi: 10.3969/j.issn.1673-923X.2014.12.020 [41] LIU K H, ZHANG H C, LIU Y F, et al. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China[J]. Environmental Science and Pollution Research International,2020,27(16):19933-19945. doi: 10.1007/s11356-020-08514-9 [42] 范小杉, 熊向艳, 马建军, 等. 北方草原露天煤矿区生态景观变化研究: 以呼伦贝尔市伊敏露天矿为例[J]. 环境工程技术学报,2019,9(6):732-740. doi: 10.12153/j.issn.1674-991X.2019.05.130FAN X S, XIONG X Y, MA J J, et al. Change of ecological landscape in open-pit coal mining area of northern grassland: taking Yimin open coal mine in Hulun Buir City as an example[J]. Journal of Environmental Engineering Technology,2019,9(6):732-740. doi: 10.12153/j.issn.1674-991X.2019.05.130 [43] HAO Q J, JIANG C S. Heavy metal concentrations in soils and plants in Rongxi Manganese Mine of Chongqing, Southwest of China[J]. Acta Ecologica Sinica,2015,35(1):46-51. doi: 10.1016/j.chnaes.2015.01.002 [44] 杜忠毓, 邢文黎, 薛亮, 等. 喀斯特石漠化锑矿区植物群落主要物种生态位特征及其种间联结[J]. 生态学报,2023,43(7):2865-2880.DU Z Y, XING W L, XUE L, et al. Niche characteristics and interspecific association of main plant species in antimony mining sites of Karst rocky desertification area, Guizhou, China[J]. Acta Ecologica Sinica,2023,43(7):2865-2880. [45] 乔欧盟, 陈璋. 矿区不同类型生态护坡工程植物多样性对环境因子的响应[J]. 应用生态学报,2022,33(3):742-748.QIAO O M, CHEN Z. Plant diversity on different types of slope ecological engineering and its responses to environmental factors in mining areas[J]. Chinese Journal of Applied Ecology,2022,33(3):742-748. [46] 金立群, 李希来, 孙华方, 等. 高寒矿区排土场不同坡向植被和土壤特征研究[J]. 土壤,2020,52(4):831-839.JIN L Q, LI X L, SUN H F, et al. Characteristics of vegetations and soils under different aspects of slag mountain in alpine mining area[J]. Soils,2020,52(4):831-839. [47] 毕银丽, 李向磊, 彭苏萍, 等. 露天矿区植物多样性与土壤养分空间变异性特征[J]. 煤炭科学技术,2020,48(12):205-213.BI Y L, LI X L, PENG S P, et al. Characteristics of spatial variability of plant diversity and soil nutrients in open-pit mining area[J]. Coal Science and Technology,2020,48(12):205-213. [48] ZHANG H, CHU L M. Plant community structure, soil properties and microbial characteristics in revegetated Quarries[J]. Ecological Engineering,2011,37(8):1104-1111. doi: 10.1016/j.ecoleng.2010.05.010 [49] HOU X Y, LIU S L, CHENG F Y, et al. Variability of environmental factors and the effects on vegetation diversity with different restoration years in a large open-pit phosphorite mine[J]. Ecological Engineering,2019,127:245-253. doi: 10.1016/j.ecoleng.2018.12.006 [50] 胡冬, 吕光辉, 王恒方, 等. 水分梯度下荒漠植物多样性与稳定性对土壤因子的响应[J]. 生态学报,2021,41(17):6738-6748.HU D, LÜ G H, WANG H F, et al. Response of desert plant diversity and stability to soil factors based on water gradient[J]. Acta Ecologica Sinica,2021,41(17):6738-6748. ⊕