Spatio-temporal variation and driving factors of dissolved oxygen in surface water of typical watershed areas in Hubei Province
-
摘要:
溶解氧(DO)是反映地表水水质状况的重要指标,是精准开展流域综合治理的关键参数之一。收集湖北省200座水质自动监测站2021—2022年地表水自动监测数据,研究DO时空变化特征并进行聚类分组,采用相关系数法、多元线性回归定量分析16个流域片区DO浓度变化的驱动因素,并提出流域治理建议。结果表明:1)时间上,湖北省地表水DO浓度存在显著季节性差异,表现为冬季>春季>秋季>夏季,其中5—10月存在显著昼夜变化。2)空间上,全省16个流域片区分为低氧区、中氧区和富氧区。低氧区为四湖片区和汉江下游片区,DO浓度和饱和度均较低,且夏季低氧发生频率高;富氧区集中在清江片区和汉江丹库以上片区,夏季易出现DO过饱和;其他流域片区为中氧区,DO饱和度稳定在较高水平。3)影响因素上,低氧区表现为复合型污染,富氧区主要受水生植物生长的影响,中氧区主要受水温影响。结合不同流域片区DO浓度变化特征,提出从“三水”统筹角度,分级分区开展流域系统化治理,即低氧区加强污染源头管控和过程控制,富氧区防控水华发生风险,中氧区严格排污总量控制。
Abstract:Dissolved oxygen(DO) is an important indicator to reflect the quality of surface water, and it is one of key parameters for carrying out accurate comprehensive management of watersheds. Automatic monitoring data of surface water from 200 water quality automatic monitoring stations in Hubei Province from 2021 to 2022 were collected to study the spatial-temporal variation characteristics of DO and perform cluster grouping. The driving factors of DO variations of sixteen watershed areas were analyzed quantitatively by correlation coefficient method and multiple linear regression, and some suggestions for watershed management were proposed. The results indicated that:(1) DO concentration of surface water in Hubei Province showed significant seasonal difference as winter>spring>autumn>summer. Moreover, there was a significant diurnal variation from May to October. (2) Sixteen watershed areas in Hubei Province were divided into low oxygen zone, medium oxygen zone and rich oxygen zone. The low oxygen zone was mainly concentrated on Sihu area and the lower reaches of Hanjiang River area, with low DO concentration and saturation and high frequency of low DO occurrence in summer. The rich oxygen zone was mainly concentrated in Qingjiang area and the upper reaches of Danku Reservoir area of the Hanjiang River, with supersaturation in summer. The other watershed areas were medium oxygen zone, with stable saturation at a high level. (3) In terms of influencing factors, the low oxygen zone was characterized by compound pollution, the rich oxygen zone was affected by aquatic plant activities, and the medium oxygen zone was affected by temperature. Based on the characteristics of DO changes in different watershed areas, from the perspective of overall coordination of "three water" (water environment, water resource, water ecology), systematic watershed management methods should be set in a graded and partitioned manner, namely strengthening pollution source and process control in the low oxygen zone, preventing and controlling the risk of water blooms in the rich oxygen zone, and strictly controlling the total discharge in the medium oxygen zone.
-
表 1 2021—2022年各月地表水DO浓度昼夜变化差异性检验结果
Table 1. Difference test of diurnal variation of DO concentration in different months from 2021 to 2022
月份 样本量 P d 1 200 0.012* 0.32 2 195 0.016* 0.24 3 199 0.005** 0.29 4 198 0.000** 0.45 5 197 0.000** 0.70 6 195 0.000** 0.84 7 196 0.000** 0.92 8 183 0.000** 0.59 9 175 0.000** 0.72 10 179 0.000** 0.56 11 191 0.727 0.04 12 194 0.295 0.11 注:**表示P<0.01,*表示P<0.05。全文同。 表 2 典型流域片区地表水DO浓度及饱和度与各影响因素之间的相关系数
Table 2. Correlation coefficient between DO concentration and saturation and various influencing factors of surface water of typical watershed areas
影响因素 四湖片区(低氧区) 清江片区(富氧区) 沮漳河片区(中氧区) DO浓度 DO饱和度 DO浓度 DO饱和度 DO浓度 DO饱和度 水温 −0.68** −0.41** 0.13* 0.60** −0.85** −0.1 pH 0.60** 0.53** 0.49** 0.50** 0.36** 0.28** 电导率 −0.07 −0.24* −0.20* −0.43** 0.11 −0.15 浊度 −0.17** −0.25* 0.06 0.13 −0.36** −0.32** 高锰酸盐指数 −0.41** −0.60** 0.40** 0.46** −0.36** −0.35** 氨氮 −0.34** −0.51** −0.09 −0.20* −0.18** −0.32** 总磷 −0.38** −0.70** −0.04 −0.07 −0.32** −0.17 总氮 −0.11* −0.41* −0.21** −0.31** −0.14* −0.11 表 3 典型流域片区地表水DO浓度多元线性回归结果
Table 3. Results of multiple linear regression of DO concentration of surface water of typical watershed areas
流域分区 影响因素组合 线性回归模型 R2 DW 四湖片区 水温 y=11.979–0.251T 0.466 1.667 水温+pH y=–6.870–0.202T+2.366pH 0.632 1.683 水温+pH+高锰酸盐指数 y = –3.808 – 0.194T + 2.113pH – 0.315CMn 0.691 1.995 水温+pH+高锰酸盐指数+总磷 y = –1.696 – 0.199T + 1.882pH – 0.240CMn – 4.903CTP 0.709 2.015 水温+pH+高锰酸盐指数+总磷+氨氮 y = 0.354 – 0.217T + 1.654pH – 0.244CMn + 0.824CTP – 1.810CNH3-N 0.743 1.962 清江片区 pH y = –27.547 + 5.968pH 0.386 1.744 pH+高锰酸盐指数 y = –23.861 + 4.077pH + 0.861CMn 0.476 1.755 沮漳河片区 水温 y = 12.711 – 0.193T 0.722 2.127 水温+pH y = 8.570 – 0.185T + 0.508pH 0.733 2.111 水温+pH+浊度 y = 9.998 – 0.181T + 0.335pH – 0.007S 0.741 2.130 水温+pH+浊度+高锰酸盐指数 y = 10.092 – 0.181T + 0.326pH – 0.006S – 0.019CMn 0.741 2.133 水温+pH+浊度+高锰酸盐指数+总磷 y = 10.101 – 0.181T + 0.327pH – 0.005S – 0.024CMn – 1.182CTP 0.741 2.134 注:T表示水温,CMn表示高锰酸盐指数,CTP表示总磷浓度,CNH3-N表示氨氮浓度,S表示浊度。 -
[1] 夏青. 水质基准与水质标准[M]. 北京: 中国标准出版社, 2004: 25-27. [2] KANNEL P R, LEE S, LEE Y S, et al. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment[J]. Environmental Monitoring and Assessment,2007,132(1):93-110. [3] 张秀锦, 牛远, 吴亚丽, 等. 高原深水湖泊抚仙湖溶解氧分层特征及驱动因素[J]. 环境科学研究,2024,37(5):1006-1014.ZHANG X J, NIU Y, WU Y L, et al. Stratification characteristics of dissolved oxygen and its driving factors in a typical plateau deep lake[J]. Research of Environmental Sciences,2024,37(5):1006-1014. [4] 徐闯, 刘广州, 陈晓宏. 珠江流域东江(东莞段)溶解氧时空变化及其影响因素[J]. 湖泊科学,2022,34(5):1540-1549. doi: 10.18307/2022.0510XU C, LIU G Z, CHEN X H. Spatiotemporal variations and influencing factors of river dissolved oxygen in Dongguan section of Dongjiang River, Pearl River Basin[J]. Journal of Lake Sciences,2022,34(5):1540-1549. doi: 10.18307/2022.0510 [5] ZHANG W Q, RONG N, JIN X, et al. Dissolved oxygen variation in the North China Plain River network region over 2011-2020 and the influencing factors[J]. Chemosphere, 2022, 287: 132354. [6] LOPERFIDO J V, JUST C L, SCHNOOR J L. High-frequency diel dissolved oxygen stream data modeled for variable temperature and scale[J]. Journal of Environmental Engineering,2009,135(12):1250-1256. doi: 10.1061/(ASCE)EE.1943-7870.0000102 [7] DU J B, SHEN J, PARK K, et al. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay[J]. Science of the Total Environment,2018,630:707-717. doi: 10.1016/j.scitotenv.2018.02.265 [8] HE J X, CHU A, RYAN M C, et al. Abiotic influences on dissolved oxygen in a riverine environment[J]. Ecological Engineering,2011,37(11):1804-1814. doi: 10.1016/j.ecoleng.2011.06.022 [9] LAN T, LIN K R, LIU Z Y, et al. A clustering preprocessing framework for the subannual calibration of a hydrological model considering climate-land surface variations[J]. Water Resources Research,2018,54(12):10034-10052. [10] 湖北省人民政府. 湖北建设全国构建新发展格局先行区总纲出炉[A/OL]. (2023-01-30)[2023-10-20]. http://www.hubei.gov.cn/zwgk/hbyw/hbywqb/202301/t20230130_4500037.shtml. [11] 湖北省生态环境厅. 2022年湖北省生态环境状况公报[A/OL]. (2023-06-29)[2023-10-20]. http://sthjt.hubei.gov.cn/fbjd/xxgkml/gysyjs/sthj/sthjgb/. [12] 李佳, 廉振强, 窦明, 等. 丹江库区水质时空分布特征及影响因素[J]. 南水北调与水利科技(中英文),2023,21(1):181-189.LI J, LIAN Z Q, DOU M, et al. Spatio-temporal distribution characteristics of water quality and influencing factors in Danjiang Reservoir area[J]. South-to-North Water Transfers and Water Science & Technology,2023,21(1):181-189. [13] 周汉娥, 陈晓飞, 何鑫, 等. 洪湖营养盐时空分布特征及成因分析[J]. 地球与环境,2021,49(1):9-17.ZHOU H E, CHEN X F, HE X, et al. Research on spatio-temporal variation and causes of nutrients in Honghu Lake[J]. Earth and Environment,2021,49(1):9-17. [14] 岳智颖. 湖北省地表水污染时空变化特征及污染源解析[D]. 武汉: 华中师范大学, 2019. [15] 李金德, 秦晶, 欧贤才. SPSS统计分析与应用[M]. 北京: 清华大学出版社, 2019: 184-188. [16] 黄炜惠, 马春子, 李文攀, 等. 我国地表水溶解氧时空变化及其对全球变暖的响应[J]. 环境科学学报,2021,41(5):1970-1980.HUANG W H, MA C Z, LI W P, et al. Spatial-temporal variations of dissolved oxygen and their response to global warming in China[J]. Acta Scientiae Circumstantiae,2021,41(5):1970-1980. [17] 杨春艳, 施择, 焦聪颖, 等. 2013—2020年泸沽湖溶解氧随时间变化规律及主要影响因素分析[J]. 中国环境监测,2022,38(4):139-145.YANG C Y, SHI Z, JIAO C Y, et al. Analysis of temporal variation of dissolved oxygen and its main influencing factors in the Lugu Lake from 2013 to 2020[J]. Environmental Monitoring in China,2022,38(4):139-145. [18] 董胜年. 湖泊中水下植物光合作用对溶解氧和pH值的影响[J]. 中国环境监测,1997,13(5):48-50. [19] 王占深, 赵伊茜, 黎超, 等. 水生植物配植对景观水体藻类水华的抑制[J]. 环境污染与防治,2018,40(6):627-633.WANG Z S, ZHAO Y X, LI C, et al. The inhibition of microalgae bloom in landscape water via hydrophilic plant arrangement[J]. Environmental Pollution & Control,2018,40(6):627-633. [20] 李海云, 潘杨, 张龙飞, 等. 平原感潮河网地区河道水体表观污染评价及来源解析[J]. 环境工程技术学报,2023,13(5):1839-1848.LI H Y, PAN Y, ZHANG L F, et al. Apparent pollution evaluation and source analysis of river water bodies in the tidal river network area of the Plains[J]. Journal of Environmental Engineering Technology,2023,13(5):1839-1848. [21] 张淑倩, 孔令阳, 邓绪伟, 等. 江汉湖群典型湖泊生态系统健康评价: 以梁子湖、洪湖、长湖、斧头湖、武湖为例[J]. 环境科学学报,2017,37(9):3613-3620.ZHANG S Q, KONG L Y, DENG X W, et al. Assessment of ecosystem health of typical lake wetland in the Jianghan Lake group: a case study of Liangzi Lake, Honghu Lake, Changhu Lake, Futou Lake and Wuhu Lake[J]. Acta Scientiae Circumstantiae,2017,37(9):3613-3620. [22] 李玲. 湖北四湖流域水环境现状分析研究[J]. 环境科学与管理,2014,39(8):49-52.LI L. Analysis on current situation of water environment in four- lake basin of Hubei Province[J]. Environmental Science and Management,2014,39(8):49-52. [23] 曹诗图, 杨丽斌. 清江流域旅游环境的水污染综合治理研究[J]. 生态经济,2015,31(4):141-144.CAO S T, YANG L B. Study on comprehensive treatment of the water pollution of Qingjiang River Basin's tourism environment[J]. Ecological Economy,2015,31(4):141-144. [24] 姚洪华, 张达政. 废旧金属拆解场地浅层地下水芘污染特征分析[J]. 水文地质工程地质,2012,39(3):120-123.YAO H H, ZHANG D Z. Characteristic of pyrene contamination in shallow underground water in a waste electrical appliances (machines) dismantling site[J]. Hydrogeology & Engineering Geology,2012,39(3):120-123. [25] 罗仿, 叶丰, 黄超, 等. 珠江口季节性低氧区柱状沉积物中氧化还原敏感元素的分布及其环境指示意义[J]. 地球化学,2022,51(4):377-388.LUO F, YE F, HUANG C, et al. Distribution of redox sensitive elements in a sediment core from the seasonal low-oxygen zone of the Pearl River Estuary and its paleo-environmental implications[J]. Geochimica,2022,51(4):377-388. [26] 路林超, 黄廷林, 李楠, 等. 金盆水库沉积物铁锰释放规律[J]. 环境科学,2020,41(7):3231-3239.LU L C, HUANG T L, LI N, et al. Release mechanisms of iron and manganese from sediments in Jinpen Reservoir[J]. Environmental Science,2020,41(7):3231-3239. [27] 湖北省生态环境厅. 关于发布《湖北省第二次全国污染源普查公报》的公告[A/OL]. (2020-11-11)[2023-10-20]. http://sthjt.hubei.gov.cn/fbjd/zc/zcwj/sthjt/qt/202012/t20201208_3074932.shtml. [28] 由阳阳. 湖北四湖流域不同土地利用对非点源氮磷负荷影响的模拟[D]. 荆州: 长江大学, 2013. [29] 叶翔凤, 黎喜斌. 统筹推进湖北四湖流域综合治理[J]. 党政干部论坛,2023(6):33-35. [30] 王夏晖, 张惠远, 张庆忠, 等. 四湖流域农村面源污染对水环境的影响及其控制对策[C]//第十三届世界湖泊大会论文集(中卷). 武汉: 中国环境科学学会, 2009: 5. [31] 张妍妍, 王峥, 邱斌, 等. 长江流域湖北片区典型城市水生态环境问题解析及整治对策[J]. 环境工程技术学报,2023,13(1):27-35.ZHANG Y Y, WANG Z, QIU B, et al. Analysis of water eco-environmental problems and related countermeasures for typical cities in Hubei region of the Yangtze River Basin[J]. Journal of Environmental Engineering Technology,2023,13(1):27-35. [32] 胡鹏, 杨庆, 杨泽凡, 等. 水体中溶解氧含量与其物理影响因素的实验研究[J]. 水利学报,2019,50(6):679-686.HU P, YANG Q, YANG Z F, et al. Experimental study on dissolved oxygen content in water and its physical influence factors[J]. Journal of Hydraulic Engineering,2019,50(6):679-686. [33] 卢勇, 李宏亮, 陈建芳, 等. 长江口及邻近海域表层水体溶解氧饱和度的季节变化和特征[J]. 海洋学研究,2011,29(3):71-77.LU Y, LI H L, CHEN J F, et al. Seasonal variations of the surface dissolved oxygen saturation in Changjiang River Estuary and its adjacent waters[J]. Journal of Marine Sciences,2011,29(3):71-77. [34] 卫玉杰. 清江流域水资源承载力评价研究[D]. 武汉: 中国地质大学, 2022. [35] 丁欣. 基于“四水同治” 治水理念的水生态环境评价研究[D]. 荆州: 长江大学, 2023. [36] 袁玉顶. 清江流域生态环境存在的问题及措施建议[J]. 今日科苑,2023(1):32-41.YUAN Y D. Problems and measures existing in the ecological environment of the Qingjiang River Basin[J]. Modern Science,2023(1):32-41. [37] 李文攀, 张亚捷, 谭伟, 等. 我国地表水溶解氧现状及其标准研究[J]. 环境保护,2023,51(15):46-51.LI W P, ZHANG Y J, TAN W, et al. Status of dissolved oxygen in surface water in China and related standard research[J]. Environmental Protection,2023,51(15):46-51. ◇