Effect of 5% Ag on the morphology and toluene oxidation of MnO2 nanorod and sea urchin microspheres
-
摘要:
采用水热法制备了MnO2纳米棒和海胆微球,并原位掺杂5%Ag制备了Mn-Ag复合氧化物,利用SEM、XRD、BET、Raman等表征技术对其结构进行表征,并考察不同催化剂对甲苯的去除性能。结果表明:(NH4)2S2O8的掺入量会对MnO2的形貌产生影响,当其掺入量为2.28 g时,形成MnO2纳米棒,当其掺入量为6.84 g时,形成MnO2海胆微球;MnO2纳米棒掺杂5%的Ag后,形貌未发生变化,但当MnO2海胆微球掺杂5%Ag时,表面的纳米线较MnO2海胆微球有所增长,且出现了缠绕现象,形成了空心鸟巢状结构;5%Ag掺杂后,对MnO2纳米棒和MnO2海胆微球的晶型未产生影响,均为α-MnO2,但5%Ag-MnO2纳米棒出现了Mn2O3的衍射峰;MnO2海胆微球较MnO2纳米棒的比表面积、孔径和孔容均增大,且Ag的掺杂进一步提高了MnO2海胆微球的比表面积、孔径和孔容;MnO2海胆微球比MnO2纳米棒具有更好的甲苯去除性能,且5%Ag掺杂后,MnO2海胆微球对甲苯的去除性能达到最好。
Abstract:MnO2 nanorod and sea urchin microspheres were prepared using the hydrothermal method, and Mn-Ag composite oxides were prepared by in-situ doping with 5% Ag. The as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), BET, Raman and other characterization techniques, and the removal performance of different catalysts for toluene was investigated. It was found that the amount of (NH4)2S2O8 would affect MnO2 morphology. MnO2 nanorods were formed when (NH4)2S2O8 was 2.28 g, while MnO2 sea urchin microspheres were formed when (NH4)2S2O8 was 6.84 g. There was no morphology change of MnO2 nanorods after 5% Ag doping. However, the nanowires on the surface of MnO2 sea urchin microspheres increased when 5% Ag was doped, and the entanglement phenomenon occurred, forming a hollow bird's nest structure. After 5% Ag doping, there was no effect on the crystal of MnO2 nanorods and sea urchin microspheres, both of which were α-MnO2, but a diffraction peak of Mn2O3 appeared in 5% Ag-MnO2 nanorods. Compared to MnO2 nanorods, MnO2 sea urchin microspheres showed an increasing trend of specific surface area, pore size and pore volume. The doping of Ag further increased the specific surface area, pore size and pore volume of MnO2 sea urchin microspheres. For the toluene removal, MnO2 sea urchin microspheres showed a better toluene removal performance than MnO2 nanorods, and 5% Ag-MnO2 sea urchin microspheres showed the best toluene removal performance among all the catalysts.
-
Key words:
- MnO2 nanorod /
- MnO2 sea urchin microspheres /
- Ag doping /
- morphological effect /
- toluene removal
-
表 1 不同Ag-Mn复合氧化物的T50和T90
Table 1. T50 and T90 of different Ag-Mn compiste oxides
℃ 样品 T50 T90 MnO2纳米棒 258.4 292.8 5%Ag-MnO2纳米棒 261.6 290.4 MnO2海胆微球 240.4 282.5 5%Ag-MnO2微球 214.5 237.7 表 2 不同Ag-Mn复合氧化物的比表面积和孔径
Table 2. Specific surface area and Pore Size of various Ag-Mn composite oxides
样品 比表面积/(m2/g) 孔径/nm 孔容/(cm3/g) MnO2纳米棒 10.89 18.63 0.051 5%Ag-MnO2纳米棒 8.08 21.62 0.044 MnO2海胆微球 51.40 22.86 0.294 5%Ag-MnO2微球 65.13 24.73 0.403 -
[1] GAO Y Q, LI M, WAN X, et al. Important contributions of alkenes and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central eastern China[J]. Atmospheric Environment,2021,244:117927. doi: 10.1016/j.atmosenv.2020.117927 [2] 李丛舒, 刘永全, 刘欢, 等. 天津工业区春夏季VOCs污染特征及精细化来源解析[J]. 环境工程技术学报,2023,13(2):491-500. doi: 10.12153/j.issn.1674-991X.20220214LI C S, LIU Y Q, LIU H, et al. Pollution characteristics and refined source apportionment for VOCs in Tianjin Industrial Area in spring and summer[J]. Journal of Environmental Engineering Technology,2023,13(2):491-500. doi: 10.12153/j.issn.1674-991X.20220214 [3] 莫子颖, 肖勇梅, 邢秀梅. 职业接触甲苯暴露生物标志物研究进展[J]. 职业与健康,2021,37(6):855-859.MO Z Y, XIAO Y M, XING X M. Research progress on biomarkers of occupational exposure to toluene[J]. Occupation and Health,2021,37(6):855-859. [4] 周媛媛, 刘晗, 邓琳, 等. Mn1- yNi yO x的制备及其催化燃烧甲苯性能的研究[J]. 中国环境科学,2022,42(4):1601-1609. doi: 10.3969/j.issn.1000-6923.2022.04.013ZHOU Y Y, LIU H, DENG L, et al. Synthesis of Mn1- yNi yO x catalyst and its high efficient performance for toluene catalytic combustion[J]. China Environmental Science,2022,42(4):1601-1609. doi: 10.3969/j.issn.1000-6923.2022.04.013 [5] 王婷, 李旭, 齐静, 等. 我国理发场所室内空气污染及对从业人员健康的影响[J]. 环境卫生学杂志,2022,12(2):108-114.WANG T, LI X, QI J, et al. Status of indoor air pollution in barbershops and its health effects on practitioners in China[J]. Journal of Environmental Hygiene,2022,12(2):108-114. [6] XU H, XI X T, XU X F, et al. Development of a volatile organic compounds cryogenic condensation recovery system cooled by liquid nitrogen[R]. IOP Conference Series: Materials Science and Engineering, 2022. [7] IDRIS N F, LE-MINH N, HAYES J E, et al. Performance of wet scrubbers to remove VOCs from rubber emissions[J]. Journal of Environmental Management,2022,305:114426. doi: 10.1016/j.jenvman.2021.114426 [8] GUO Q, LIU Y Z, QI G S, et al. Adsorption and desorption behaviour of toluene on activated carbon in a high gravity rotating bed[J]. Chemical Engineering Research and Design,2019,143:47-55. doi: 10.1016/j.cherd.2019.01.005 [9] LIU R, WU H, SHI J H, et al. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology,2022,12(23):6945-6991. [10] 刘玉凤, 周瑛, 卢梅, 等. 贵金属单原子催化剂的制备及其在CO、VOCs完全氧化反应中的应用[J]. 分子催化,2022,36(1):81-97.LIU Y F, ZHOU Y, LU M, et al. Preparation of noble metal single-atom catalyst and its applications in catalytic oxidation reaction of CO and VOCs[J]. Journal of Molecular Catalysis,2022,36(1):81-97. [11] XIAO M L, YANG X Q, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research,2022,15(8):7042-7051. doi: 10.1007/s12274-022-4360-0 [12] ZHANG W D, ZHOU Y, SHAMZHY M, et al. Total oxidation of toluene and propane over supported Co3O4 catalysts: effect of structure/acidity of MWW zeolite and cobalt loading[J]. ACS Applied Materials & Interfaces,2021,13(13):15143-15158. [13] DONG Y X, SU C G, LIU K, et al. The catalytic oxidation of formaldehyde by FeO x-MnO2-CeO2 catalyst: effect of iron modification[J]. Catalysts,2021,11(5):555. doi: 10.3390/catal11050555 [14] 耿莉莉, 荣成礼, 林艾璇, 等. 低温高效催化湿式氧化处理甲醛废水Pt/MnO2催化剂[J]. 科学通报,2021,66(22):2898-2907. doi: 10.1360/TB-2020-1325GENG L L, RONG C L, LIN A X, et al. Pt/MnO2 catalyst for high-efficiency catalytic wet oxidation of formaldehyde wastewater at low temperature[J]. Chinese Science Bulletin,2021,66(22):2898-2907. doi: 10.1360/TB-2020-1325 [15] PAN T, DENG H, KANG S Y, et al. A simple strategy to tune α-MnO2 and enhance VOC oxidation via precipitation rate control[J]. Applied Surface Science,2022,576:151823. doi: 10.1016/j.apsusc.2021.151823 [16] 刘亚茹, 黄宇. MnO2基材料常温催化降解甲醛研究进展[J]. 地球环境学报,2020,11(1):14-30.LIU Y R, HUANG Y. Research progress on room-temperature catalytic degradation of formaldehyde over MnO2-based catalysts[J]. Journal of Earth Environment,2020,11(1):14-30. [17] WANG Y, WU J, WANG G, et al. Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2 for low-temperature toluene oxidation[J]. Applied Catalysis B: Environmental,2021,285:119873. doi: 10.1016/j.apcatb.2020.119873 [18] 谭伟, 袁震, 蒋进元, 等. 不同形貌MnO2及其负载Au催化剂的制备与CO和甲苯催化氧化性能研究[J]. 环境工程技术学报,2018,8(2):142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019TAN W, YUAN Z, JIANG J Y, et al. Preparation of different morphologies of Au/α-MnO2 catalyst for oxidation of carbon monoxide and toluene[J]. Journal of Environmental Engineering Technology,2018,8(2):142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019 [19] CHENG G, LIU P, CHEN S H, et al. Self-templated formation of hierarchical hollow β-MnO2 microspheres with enhanced oxygen reduction activities[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,637:128228. doi: 10.1016/j.colsurfa.2021.128228 [20] 陈丽雅, 程高, 刘冠良, 等. 三维海胆状二氧化锰微球对电催化氧还原反应的晶型效应[J]. 无机化学学报,2020,36(3):458-466. doi: 10.11862/CJIC.2020.048CHEN L Y, CHENG G, LIU G L, et al. Structure-activity relationship of three-dimensional urchin-like MnO2 microspheres with different crystalline phases for oxygen reduction reaction[J]. Chinese Journal of Inorganic Chemistry,2020,36(3):458-466. doi: 10.11862/CJIC.2020.048 [21] 梅超强, 杨波, 戴毅, 等. Co改性α-MnO2催化剂低温同时脱硝脱氯苯活性研究[J]. 南京工业大学学报(自然科学版),2022,44(3):269-275.MEI C Q, YANG B, DAI Y, et al. Activity study of Co modified α-MnO2 catalyst for simultaneous removal of NO x and C6H5C1 at low temperature[J]. Journal of Nanjing Tech University (Natural Science Edition),2022,44(3):269-275. [22] 程丽军, 刘照, 袁善良, 等. 络合浸渍法制备Ag/Al2O3-TiO2催化剂及其催化燃烧丙烷性能[J]. 合成化学,2022,30(5):343-350.CHENG L J, LIU Z, YUAN S L, et al. Catalytic performance of Ag/Al2O3-TiO2 catalyst prepared by complexing impregnation method for propane combustion[J]. Chinese Journal of Synthetic Chemistry,2022,30(5):343-350. [23] SCIRÈ S, MINICÒ S, CRISAFULLI C, et al. Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3[J]. Catalysis Communications,2001,2(6/7):229-232. [24] CHEN D, QU Z P, SHEN S J, et al. Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde[J]. Catalysis Today,2011,175(1):338-345. doi: 10.1016/j.cattod.2011.03.059 [25] YE Q, ZHAO J S, HUO F F, et al. Nanosized Ag/α-MnO2 catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene[J]. Catalysis Today,2011,175(1):603-609. doi: 10.1016/j.cattod.2011.04.008 [26] ZHANG L, ZHU S M, LI R Z, et al. Ag-doped δ-MnO2 nanosheets as robust catalysts for toluene combustion[J]. ACS Applied Nano Materials,2020,3(12):11869-11880. doi: 10.1021/acsanm.0c02444 [27] DENG H, KANG S Y, MA J Z, et al. Role of structural defects in MnO x promoted by Ag doping in the catalytic combustion of volatile organic compounds and ambient decomposition of O3[J]. Environmental Science & Technology,2019,53(18):10871-10879. [28] WANG Y H, ZHANG L Z, ZHANG C S, et al. Promoting the generation of active oxygen over Ag-modified nanoflower-like α-MnO2 for soot oxidation: experimental and DFT studies[J]. Industrial & Engineering Chemistry Research,2020,59(22):10407-10417. [29] LI D Y, YANG J, TANG W X, et al. Controlled synthesis of hierarchical MnO2 microspheres with hollow interiors for the removal of benzene[J]. RSC Advances,2014,4(51):26796-26803. doi: 10.1039/c4ra01146e [30] HE A D, WANG L Y, SONG Z T, et al. Amorphous Ge2Sb2Te5 chemical mechanical planarization using (NH4)2S2O8 or H2O2 as oxidizer in acidic slurry[J]. ECS Journal of Solid State Science and Technology,2012,1(4):179-183. doi: 10.1149/2.014204jss [31] 张洁静. CuO基纳米材料的制备及光催化性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [32] 代林娜. 锰氧化物的制备及其催化锂-氧气电池机理研究[D]. 济南: 山东大学, 2022. [33] 蓝邦. 微纳米氧化锰的可控水热合成及性能研究[D]. 广州: 广东工业大学, 2013. [34] HAN Z Y, WANG C, ZOU X H, et al. Diatomite-supported birnessite–type MnO2 catalytic oxidation of formaldehyde: preparation, performance and mechanism[J]. Applied Surface Science,2020,502:144201. doi: 10.1016/j.apsusc.2019.144201 [35] 盛雨佳, 陈冬, 刘海波, 等. 不同合成法对Ce-MnO x选择性催化氧化NH3性能的影响[J]. 环境工程,2022,40(1):60-68.SHENG Y J, CHEN D, LIU H B, et al. Effect of synthesis method on performance of Ce-MnO x for selective catalytic oxidation of ammonia[J]. Environmental Engineering,2022,40(1):60-68. [36] 汤焕丰, 黄在银, 肖明. 立方体纳米Cu2O表面热力学函数的粒度及温度效应[J]. 物理化学学报,2016,32(11):2678-2684. doi: 10.3866/PKU.WHXB201608084TANG H F, HUANG Z Y, XIAO M. Effects of particle size and temperature on surface thermodynamic functions of cubic nano-Cu2O[J]. Acta Physico-Chimica Sinica,2016,32(11):2678-2684. doi: 10.3866/PKU.WHXB201608084 [37] 汤焕丰, 黄在银, 肖明, 等. 立方体纳米氧化亚铜反应动力学的理论及实验研究[J]. 物理化学学报,2016,32(12):2891-2897. doi: 10.3866/PKU.WHXB201609133TANG H F, HUANG Z Y, XIAO M, et al. An investigation into the reaction kinetics of cubic nano-Cu2O in theory and experiment[J]. Acta Physico-Chimica Sinica,2016,32(12):2891-2897. doi: 10.3866/PKU.WHXB201609133 [38] YIN A Y, WEN C, DAI W L, et al. Ag/MCM-41 as a highly efficient mesostructured catalyst for the chemoselective synthesis of methyl glycolate and ethylene glycol[J]. Applied Catalysis B: Environmental,2011,108/109:90-99. doi: 10.1016/j.apcatb.2011.08.013 [39] HU F Y, CHEN J J, PENG Y, et al. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion[J]. Chemical Engineering Journal,2018,331:425-434. doi: 10.1016/j.cej.2017.08.110 [40] CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnO x-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental,2018,224:825-835. □ doi: 10.1016/j.apcatb.2017.11.036