留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5%Ag掺杂对MnO2纳米棒和海胆微球形貌及其甲苯氧化性能的影响

鲁美娟 方汉孙 黄华军 李丹萍 吴玮玲 屈小路 喻成龙

鲁美娟,方汉孙,黄华军,等.5%Ag掺杂对MnO2纳米棒和海胆微球形貌及其甲苯氧化性能的影响[J].环境工程技术学报,2024,14(4):1239-1246 doi: 10.12153/j.issn.1674-991X.20230865
引用本文: 鲁美娟,方汉孙,黄华军,等.5%Ag掺杂对MnO2纳米棒和海胆微球形貌及其甲苯氧化性能的影响[J].环境工程技术学报,2024,14(4):1239-1246 doi: 10.12153/j.issn.1674-991X.20230865
LU M J,FANG H S,HUANG H J,et al.Effect of 5% Ag on the morphology and toluene oxidation of MnO2 nanorod and sea urchin microspheres[J].Journal of Environmental Engineering Technology,2024,14(4):1239-1246 doi: 10.12153/j.issn.1674-991X.20230865
Citation: LU M J,FANG H S,HUANG H J,et al.Effect of 5% Ag on the morphology and toluene oxidation of MnO2 nanorod and sea urchin microspheres[J].Journal of Environmental Engineering Technology,2024,14(4):1239-1246 doi: 10.12153/j.issn.1674-991X.20230865

5%Ag掺杂对MnO2纳米棒和海胆微球形貌及其甲苯氧化性能的影响

doi: 10.12153/j.issn.1674-991X.20230865
基金项目: 国家自然科学基金项目(51508245,52160009);江西省主要学科学术和技术带头人培养计划—青年人才项目(20212BCJL23054)
详细信息
    作者简介:

    鲁美娟(1983—),女,副教授,博士,研究方向为环境功能材料的开发及其在环境污染物治理方面的应用,lumj2007@126.com

    通讯作者:

    喻成龙(1988—),男,副教授,博士,主要从事环境功能材料的研发及大气污染控制的研究,chenglongyu888@163.com

  • 中图分类号: X511

Effect of 5% Ag on the morphology and toluene oxidation of MnO2 nanorod and sea urchin microspheres

  • 摘要:

    采用水热法制备了MnO2纳米棒和海胆微球,并原位掺杂5%Ag制备了Mn-Ag复合氧化物,利用SEM、XRD、BET、Raman等表征技术对其结构进行表征,并考察不同催化剂对甲苯的去除性能。结果表明:(NH4)2S2O8的掺入量会对MnO2的形貌产生影响,当其掺入量为2.28 g时,形成MnO2纳米棒,当其掺入量为6.84 g时,形成MnO2海胆微球;MnO2纳米棒掺杂5%的Ag后,形貌未发生变化,但当MnO2海胆微球掺杂5%Ag时,表面的纳米线较MnO2海胆微球有所增长,且出现了缠绕现象,形成了空心鸟巢状结构;5%Ag掺杂后,对MnO2纳米棒和MnO2海胆微球的晶型未产生影响,均为α-MnO2,但5%Ag-MnO2纳米棒出现了Mn2O3的衍射峰;MnO2海胆微球较MnO2纳米棒的比表面积、孔径和孔容均增大,且Ag的掺杂进一步提高了MnO2海胆微球的比表面积、孔径和孔容;MnO2海胆微球比MnO2纳米棒具有更好的甲苯去除性能,且5%Ag掺杂后,MnO2海胆微球对甲苯的去除性能达到最好。

     

  • 图  1  不同形貌的Ag-Mn复合氧化物的SEM

    Figure  1.  SEM of Ag-Mn composite oxides with different morphologies

    图  2  不同Ag-Mn复合氧化物的XRD谱图

    Figure  2.  XRD patterns of different Ag-Mn composite oxides

    图  3  不同Ag-Mn复合氧化物的拉曼光谱

    Figure  3.  Raman spectrum of different Ag-Mn composite oxides

    图  4  不同Ag-Mn复合氧化物对甲苯的氧化活性

    Figure  4.  Oxidative activity of different Ag-Mn composite oxides on toluene

    图  5  不同Ag-Mn复合氧化物的N2吸附-脱附曲线和孔径分布

    Figure  5.  N2 adsorption-desorption curve and pore size distributions of different Ag-Mn composite oxides

    表  1  不同Ag-Mn复合氧化物的T50T90

    Table  1.   T50 and T90 of different Ag-Mn compiste oxides ℃ 

    样品T50T90
    MnO2纳米棒258.4292.8
    5%Ag-MnO2纳米棒261.6290.4
    MnO2海胆微球240.4282.5
    5%Ag-MnO2微球214.5237.7
    下载: 导出CSV

    表  2  不同Ag-Mn复合氧化物的比表面积和孔径

    Table  2.   Specific surface area and Pore Size of various Ag-Mn composite oxides

    样品比表面积/(m2/g)孔径/nm孔容/(cm3/g)
    MnO2纳米棒10.8918.630.051
    5%Ag-MnO2纳米棒8.0821.620.044
    MnO2海胆微球51.4022.860.294
    5%Ag-MnO2微球65.1324.730.403
    下载: 导出CSV
  • [1] GAO Y Q, LI M, WAN X, et al. Important contributions of alkenes and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central eastern China[J]. Atmospheric Environment,2021,244:117927. doi: 10.1016/j.atmosenv.2020.117927
    [2] 李丛舒, 刘永全, 刘欢, 等. 天津工业区春夏季VOCs污染特征及精细化来源解析[J]. 环境工程技术学报,2023,13(2):491-500. doi: 10.12153/j.issn.1674-991X.20220214

    LI C S, LIU Y Q, LIU H, et al. Pollution characteristics and refined source apportionment for VOCs in Tianjin Industrial Area in spring and summer[J]. Journal of Environmental Engineering Technology,2023,13(2):491-500. doi: 10.12153/j.issn.1674-991X.20220214
    [3] 莫子颖, 肖勇梅, 邢秀梅. 职业接触甲苯暴露生物标志物研究进展[J]. 职业与健康,2021,37(6):855-859.

    MO Z Y, XIAO Y M, XING X M. Research progress on biomarkers of occupational exposure to toluene[J]. Occupation and Health,2021,37(6):855-859.
    [4] 周媛媛, 刘晗, 邓琳, 等. Mn1- yNi yO x的制备及其催化燃烧甲苯性能的研究[J]. 中国环境科学,2022,42(4):1601-1609. doi: 10.3969/j.issn.1000-6923.2022.04.013

    ZHOU Y Y, LIU H, DENG L, et al. Synthesis of Mn1- yNi yO x catalyst and its high efficient performance for toluene catalytic combustion[J]. China Environmental Science,2022,42(4):1601-1609. doi: 10.3969/j.issn.1000-6923.2022.04.013
    [5] 王婷, 李旭, 齐静, 等. 我国理发场所室内空气污染及对从业人员健康的影响[J]. 环境卫生学杂志,2022,12(2):108-114.

    WANG T, LI X, QI J, et al. Status of indoor air pollution in barbershops and its health effects on practitioners in China[J]. Journal of Environmental Hygiene,2022,12(2):108-114.
    [6] XU H, XI X T, XU X F, et al. Development of a volatile organic compounds cryogenic condensation recovery system cooled by liquid nitrogen[R]. IOP Conference Series: Materials Science and Engineering, 2022.
    [7] IDRIS N F, LE-MINH N, HAYES J E, et al. Performance of wet scrubbers to remove VOCs from rubber emissions[J]. Journal of Environmental Management,2022,305:114426. doi: 10.1016/j.jenvman.2021.114426
    [8] GUO Q, LIU Y Z, QI G S, et al. Adsorption and desorption behaviour of toluene on activated carbon in a high gravity rotating bed[J]. Chemical Engineering Research and Design,2019,143:47-55. doi: 10.1016/j.cherd.2019.01.005
    [9] LIU R, WU H, SHI J H, et al. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology,2022,12(23):6945-6991.
    [10] 刘玉凤, 周瑛, 卢梅, 等. 贵金属单原子催化剂的制备及其在CO、VOCs完全氧化反应中的应用[J]. 分子催化,2022,36(1):81-97.

    LIU Y F, ZHOU Y, LU M, et al. Preparation of noble metal single-atom catalyst and its applications in catalytic oxidation reaction of CO and VOCs[J]. Journal of Molecular Catalysis,2022,36(1):81-97.
    [11] XIAO M L, YANG X Q, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research,2022,15(8):7042-7051. doi: 10.1007/s12274-022-4360-0
    [12] ZHANG W D, ZHOU Y, SHAMZHY M, et al. Total oxidation of toluene and propane over supported Co3O4 catalysts: effect of structure/acidity of MWW zeolite and cobalt loading[J]. ACS Applied Materials & Interfaces,2021,13(13):15143-15158.
    [13] DONG Y X, SU C G, LIU K, et al. The catalytic oxidation of formaldehyde by FeO x-MnO2-CeO2 catalyst: effect of iron modification[J]. Catalysts,2021,11(5):555. doi: 10.3390/catal11050555
    [14] 耿莉莉, 荣成礼, 林艾璇, 等. 低温高效催化湿式氧化处理甲醛废水Pt/MnO2催化剂[J]. 科学通报,2021,66(22):2898-2907. doi: 10.1360/TB-2020-1325

    GENG L L, RONG C L, LIN A X, et al. Pt/MnO2 catalyst for high-efficiency catalytic wet oxidation of formaldehyde wastewater at low temperature[J]. Chinese Science Bulletin,2021,66(22):2898-2907. doi: 10.1360/TB-2020-1325
    [15] PAN T, DENG H, KANG S Y, et al. A simple strategy to tune α-MnO2 and enhance VOC oxidation via precipitation rate control[J]. Applied Surface Science,2022,576:151823. doi: 10.1016/j.apsusc.2021.151823
    [16] 刘亚茹, 黄宇. MnO2基材料常温催化降解甲醛研究进展[J]. 地球环境学报,2020,11(1):14-30.

    LIU Y R, HUANG Y. Research progress on room-temperature catalytic degradation of formaldehyde over MnO2-based catalysts[J]. Journal of Earth Environment,2020,11(1):14-30.
    [17] WANG Y, WU J, WANG G, et al. Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2 for low-temperature toluene oxidation[J]. Applied Catalysis B: Environmental,2021,285:119873. doi: 10.1016/j.apcatb.2020.119873
    [18] 谭伟, 袁震, 蒋进元, 等. 不同形貌MnO2及其负载Au催化剂的制备与CO和甲苯催化氧化性能研究[J]. 环境工程技术学报,2018,8(2):142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019

    TAN W, YUAN Z, JIANG J Y, et al. Preparation of different morphologies of Au/α-MnO2 catalyst for oxidation of carbon monoxide and toluene[J]. Journal of Environmental Engineering Technology,2018,8(2):142-148. doi: 10.3969/j.issn.1674-991X.2018.02.019
    [19] CHENG G, LIU P, CHEN S H, et al. Self-templated formation of hierarchical hollow β-MnO2 microspheres with enhanced oxygen reduction activities[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,637:128228. doi: 10.1016/j.colsurfa.2021.128228
    [20] 陈丽雅, 程高, 刘冠良, 等. 三维海胆状二氧化锰微球对电催化氧还原反应的晶型效应[J]. 无机化学学报,2020,36(3):458-466. doi: 10.11862/CJIC.2020.048

    CHEN L Y, CHENG G, LIU G L, et al. Structure-activity relationship of three-dimensional urchin-like MnO2 microspheres with different crystalline phases for oxygen reduction reaction[J]. Chinese Journal of Inorganic Chemistry,2020,36(3):458-466. doi: 10.11862/CJIC.2020.048
    [21] 梅超强, 杨波, 戴毅, 等. Co改性α-MnO2催化剂低温同时脱硝脱氯苯活性研究[J]. 南京工业大学学报(自然科学版),2022,44(3):269-275.

    MEI C Q, YANG B, DAI Y, et al. Activity study of Co modified α-MnO2 catalyst for simultaneous removal of NO x and C6H5C1 at low temperature[J]. Journal of Nanjing Tech University (Natural Science Edition),2022,44(3):269-275.
    [22] 程丽军, 刘照, 袁善良, 等. 络合浸渍法制备Ag/Al2O3-TiO2催化剂及其催化燃烧丙烷性能[J]. 合成化学,2022,30(5):343-350.

    CHENG L J, LIU Z, YUAN S L, et al. Catalytic performance of Ag/Al2O3-TiO2 catalyst prepared by complexing impregnation method for propane combustion[J]. Chinese Journal of Synthetic Chemistry,2022,30(5):343-350.
    [23] SCIRÈ S, MINICÒ S, CRISAFULLI C, et al. Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3[J]. Catalysis Communications,2001,2(6/7):229-232.
    [24] CHEN D, QU Z P, SHEN S J, et al. Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde[J]. Catalysis Today,2011,175(1):338-345. doi: 10.1016/j.cattod.2011.03.059
    [25] YE Q, ZHAO J S, HUO F F, et al. Nanosized Ag/α-MnO2 catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene[J]. Catalysis Today,2011,175(1):603-609. doi: 10.1016/j.cattod.2011.04.008
    [26] ZHANG L, ZHU S M, LI R Z, et al. Ag-doped δ-MnO2 nanosheets as robust catalysts for toluene combustion[J]. ACS Applied Nano Materials,2020,3(12):11869-11880. doi: 10.1021/acsanm.0c02444
    [27] DENG H, KANG S Y, MA J Z, et al. Role of structural defects in MnO x promoted by Ag doping in the catalytic combustion of volatile organic compounds and ambient decomposition of O3[J]. Environmental Science & Technology,2019,53(18):10871-10879.
    [28] WANG Y H, ZHANG L Z, ZHANG C S, et al. Promoting the generation of active oxygen over Ag-modified nanoflower-like α-MnO2 for soot oxidation: experimental and DFT studies[J]. Industrial & Engineering Chemistry Research,2020,59(22):10407-10417.
    [29] LI D Y, YANG J, TANG W X, et al. Controlled synthesis of hierarchical MnO2 microspheres with hollow interiors for the removal of benzene[J]. RSC Advances,2014,4(51):26796-26803. doi: 10.1039/c4ra01146e
    [30] HE A D, WANG L Y, SONG Z T, et al. Amorphous Ge2Sb2Te5 chemical mechanical planarization using (NH4)2S2O8 or H2O2 as oxidizer in acidic slurry[J]. ECS Journal of Solid State Science and Technology,2012,1(4):179-183. doi: 10.1149/2.014204jss
    [31] 张洁静. CuO基纳米材料的制备及光催化性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [32] 代林娜. 锰氧化物的制备及其催化锂-氧气电池机理研究[D]. 济南: 山东大学, 2022.
    [33] 蓝邦. 微纳米氧化锰的可控水热合成及性能研究[D]. 广州: 广东工业大学, 2013.
    [34] HAN Z Y, WANG C, ZOU X H, et al. Diatomite-supported birnessite–type MnO2 catalytic oxidation of formaldehyde: preparation, performance and mechanism[J]. Applied Surface Science,2020,502:144201. doi: 10.1016/j.apsusc.2019.144201
    [35] 盛雨佳, 陈冬, 刘海波, 等. 不同合成法对Ce-MnO x选择性催化氧化NH3性能的影响[J]. 环境工程,2022,40(1):60-68.

    SHENG Y J, CHEN D, LIU H B, et al. Effect of synthesis method on performance of Ce-MnO x for selective catalytic oxidation of ammonia[J]. Environmental Engineering,2022,40(1):60-68.
    [36] 汤焕丰, 黄在银, 肖明. 立方体纳米Cu2O表面热力学函数的粒度及温度效应[J]. 物理化学学报,2016,32(11):2678-2684. doi: 10.3866/PKU.WHXB201608084

    TANG H F, HUANG Z Y, XIAO M. Effects of particle size and temperature on surface thermodynamic functions of cubic nano-Cu2O[J]. Acta Physico-Chimica Sinica,2016,32(11):2678-2684. doi: 10.3866/PKU.WHXB201608084
    [37] 汤焕丰, 黄在银, 肖明, 等. 立方体纳米氧化亚铜反应动力学的理论及实验研究[J]. 物理化学学报,2016,32(12):2891-2897. doi: 10.3866/PKU.WHXB201609133

    TANG H F, HUANG Z Y, XIAO M, et al. An investigation into the reaction kinetics of cubic nano-Cu2O in theory and experiment[J]. Acta Physico-Chimica Sinica,2016,32(12):2891-2897. doi: 10.3866/PKU.WHXB201609133
    [38] YIN A Y, WEN C, DAI W L, et al. Ag/MCM-41 as a highly efficient mesostructured catalyst for the chemoselective synthesis of methyl glycolate and ethylene glycol[J]. Applied Catalysis B: Environmental,2011,108/109:90-99. doi: 10.1016/j.apcatb.2011.08.013
    [39] HU F Y, CHEN J J, PENG Y, et al. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion[J]. Chemical Engineering Journal,2018,331:425-434. doi: 10.1016/j.cej.2017.08.110
    [40] CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnO x-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental,2018,224:825-835. □ doi: 10.1016/j.apcatb.2017.11.036
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  38
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-03
  • 录用日期:  2024-04-18
  • 修回日期:  2024-01-29

目录

    /

    返回文章
    返回