Effect of composite modifier on the physical properties of graphite tailings
-
摘要:
为了解决石墨尾矿复垦过程中物理性状较差的问题,研制出一种能够改善其透气性、保水性及结构性的复合改良剂。首先,通过室内试验分别探究玉米秸秆、牛粪和风化煤3种材料对石墨尾矿物理性状的影响以及施用量范围;其次,采用响应面法(RSM)设计试验,得到复合改良剂(玉米秸秆+牛粪+风化煤)的最优配比;最后,分别从透气性、保水性和结构性上分析改良后尾矿的物理性能,并利用扫描电镜(SEM)技术探讨复合改良剂对其微观结构的影响及作用。结果表明:施用单一改良材料时,玉米秸秆对石墨尾矿透气性影响效果最为明显,牛粪对其保水性提升最为显著,风化煤对其大团聚体含量的影响效果最强。复合改良剂的最优配比为玉米秸秆4.10%、牛粪10.49%、风化煤2.94%,此时石墨尾矿的容重、田间持水量和大团聚体含量分别为1.1 g/cm3、61.71%和84.51%;对比改良前石墨尾矿总孔隙率和水稳性大团聚体含量分别提升了17.42%和14.48%,持水能力也得到明显改善;SEM分析显示改良后石墨尾矿表面出现明显胶结物,颗粒之间由角-面接触和边-面接触转变为直接点接触,大量颗粒凝聚在一起形成团聚结构,从微观尺度验证了复合改良剂对石墨尾矿物理性状的影响。该复合改良剂对石墨尾矿物理性状改善作用显著,对于实现石墨尾矿复垦利用具有可行性。
Abstract:In order to solve the problem of poor physical properties of graphite tailings in the process of reclamation, a composite modifier which can improve its air permeability, water retention and structure was developed. Firstly, the effects of corn straw, cow dung and weathered coal on the physical properties of graphite tailings and the range of application amount were investigated through laboratory tests. Secondly, the response surface method (RSM) was used to design the experiment, and the optimal ratio of the composite modifier (corn straw+cow dung+weathered coal) was obtained. Finally, the physical properties of the modified tailings were analyzed in terms of air permeability, water retention and structure, and the effects of the composite modifier on the microstructure were discussed by scanning electron microscopy (SEM).The results showed that when a single modified material was applied, corn straw had the most obvious effect on the permeability of graphite tailings, cow dung had the most significant effect on its water retention, and weathered coal had the strongest effect on its large aggregate content. The optimum ratio of the compound improvers was 4.10% corn straw, 10.49% cow dung and 2.94% weathered coal. At this time, the bulk density, maximum water holding capacity and large aggregate content of graphite tailings were 1.1 g/cm3, 61.71% and 84.51%, respectively. Compared with the graphite tailings before improvement, the total porosity and water-stable macroaggregate content of graphite tailings increased by 17.42% and 14.48%, respectively, and the water holding capacity was also significantly improved. SEM analysis showed that there were obvious cements on the surface of graphite tailings after improvement, and the particles changed from angle-surface contact and edge-surface contact to direct point contact. A large number of particles agglomerated together to form an agglomerated structure. The effect of composite modifier on the physical properties of graphite tailings was verified from the microscopic scale. The results show that the composite modifier has a significant effect on improving the physical properties of graphite tailings, and it is feasible to realize the soil utilization of graphite tailings.
-
Key words:
- graphite tailings /
- tailings reclamation /
- solid waste utilization /
- compound modifier /
- microstructure
-
表 1 石墨尾矿基本理化性质
Table 1. Basic physical and chemical properties of graphite tailings
pH 有机质
含量/%总氮
含量/%总磷
含量/%速效氮
含量/(mg/kg)速效磷
含量/(mg/kg)速效钾
含量/(mg/kg)8.21 1.05 0.314 0.042 376.20 4.14 56.50 表 2 试验材料基本理化性质
Table 2. Basic physical and chemical properties of test materials
材料 pH C/N 有机碳
含量/(g/kg)全氮
含量/(g/kg)全磷
含量/(g/kg)全钾
含量/(g/kg)玉米秸秆 7.06 64 486.14 0.670 0.141 1.482 牛粪 8.74 18 291.77 2.598 1.150 0.987 风化煤 6.04 80 562.50 4.400 0.240 1.910 表 3 单一改良试验设计
Table 3. Single improved experimental design
试验组 秸秆施用量/% 牛粪施用量/% 风化煤施用量/% 1 0 0 0 2 1 0 0 0 1 0 0 0 1 3 2 0 0 0 5 0 0 0 2 4 4 0 0 0 10 0 0 0 3 5 6 0 0 0 15 0 0 0 4 表 4 响应面因素设计与水平编码
Table 4. Response surface factor design and horizontal coding
水平编码 秸秆施用
量(x1)/%牛粪施用
量(x2)/%风化煤施用
量(x3)/%低(−1) 3 9 1 中心(0) 4 10 2 高(1) 5 11 3 表 5 响应面试验设计与测试结果
Table 5. Response surface experimental design and test results
序号 秸秆
施用量/%牛粪施
用量/%风化煤
施用量/%容重/
(g/cm3)田间持
水量/%大团聚
体含量/%1 3 9 2 1.23 57.7 78.65 2 5 9 2 1.08 56.4 81.92 3 3 11 2 1.22 59.6 80.58 4 5 11 2 1.07 58.8 83.71 5 3 10 1 1.25 58.6 76.88 6 5 10 1 1.09 57.9 79.81 7 3 10 3 1.21 59.7 82.79 8 5 10 3 1.06 58.8 85.83 9 4 9 1 1.20 56.9 78.99 10 4 11 1 1.16 59.2 79.40 11 4 9 3 1.10 57.9 83.49 12 4 11 3 1.08 61.2 85.21 13 4 10 2 1.13 62.5 81.26 14 4 10 2 1.14 62.1 80.84 15 4 10 2 1.12 62.3 81.40 16 4 10 2 1.13 62.1 81.09 17 4 10 2 1.15 61.9 81.31 表 6 响应面回归模型方差分析
Table 6. Analysis of variance of response surface regression model
响应值 P 失拟项 R2 $R_{\mathrm{Adj}}^2 $ $R_{\mathrm{Pred}}^2 $ AP CV/% Y1 <0.000 1 0.183 9 0.939 0 0.924 9 0.886 6 26.71 1.45 Y2 <0.000 1 0.213 1 0.991 2 0.979 9 0.905 1 26.74 0.48 Y3 <0.000 1 0.077 1 0.974 5 0.968 6 0.950 6 43.06 0.51 -
[1] US G S. Mineral commodity summaries 2023[R]. Reston, VA: National Minerals Information Center, 2023. [2] VASUMATHI N, VIJAYA KUMAR T V, RATCHAMBIGAI S, et al. Flotation studies on low grade graphite ore from eastern India[J]. International Journal of Mining Science and Technology,2015,25(3):415-420. doi: 10.1016/j.ijmst.2015.03.014 [3] BARMA S D, BASKEY P K, RAO D S, et al. Ultrasonic-assisted flotation for enhancing the recovery of flaky graphite from low-grade graphite ore[J]. Ultrasonics Sonochemistry,2019,56:386-396. doi: 10.1016/j.ultsonch.2019.04.033 [4] 张家荣, 刘建林. 尾矿库溃坝及尾矿泄漏事故树安全评价与预防[J]. 环境工程技术学报,2019,9(2):201-206. doi: 10.12153/j.issn.1674-991X.2018.10.190ZHANG J R, LIU J L. FTA-based safety evaluation and prevention of dam break and tailings leakage in tailings reservoir[J]. Journal of Environmental Engineering Technology,2019,9(2):201-206. doi: 10.12153/j.issn.1674-991X.2018.10.190 [5] 吴建锋, 金昊, 徐晓虹, 等. 利用石墨尾矿研制陶瓷仿古砖[J]. 硅酸盐学报,2019,47(12):1760-1767.WU J F, JIN H, XU X H, et al. Preparation of ceramic rustic from graphite tailings[J]. Journal of the Chinese Ceramic Society,2019,47(12):1760-1767. [6] HU S H, LI D R, LI Y L, et al. Preparation of foamed ceramics from graphite tailings using a self-foaming method[J]. Minerals,2023,13(4):521. doi: 10.3390/min13040521 [7] LIU H B, XUE J, LI B, et al. Effect of graphite tailings as substitute sand on mechanical properties of concrete[J]. European Journal of Environmental and Civil Engineering,2022,26(7):2635-2653. doi: 10.1080/19648189.2020.1763476 [8] LIU H B, LIU K, LAN Z, et al. Mechanical and electrical characteristics of graphite tailing concrete[J]. Advances in Materials Science and Engineering,2018,2018:9297628. [9] KATHIRVEL P, KWON S J, LEE H S, et al. Graphite ore tailings as partial replacement of sand in concrete[J]. ACI Materials Journal,2018,115(3):481-492. [10] PENG Y Z, LIU Y J, ZHAN B H, et al. Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source[J]. Construction and Building Materials,2021,267:121792. doi: 10.1016/j.conbuildmat.2020.121792 [11] FU Y L, JIN Y Q, MA J, et al. Lithium-ion transfer strengthened by graphite tailings and coking coal for high-rate performance anode[J]. Chemical Engineering Journal,2022,442:136184. doi: 10.1016/j.cej.2022.136184 [12] WASSENAAR T D, HENSCHEL J R, PFAFFENTHALER M M, et al. Ensuring the future of the Namib's biodiversity: ecological restoration as a key management response to a mining boom[J]. Journal of Arid Environments,2013,93:126-135. doi: 10.1016/j.jaridenv.2012.05.012 [13] 刘斯文, 黄园英, 韩子金, 等. 离子型稀土矿山土壤生态修复研究与实践[J]. 环境工程,2015,33(11):160-165.LIU S W, HUANG Y Y, HAN Z J, et al. Practices of the soil ecological remediation in ion-absorbed rare earth mine[J]. Environmental Engineering,2015,33(11):160-165. [14] 邓华, 高明, 龙翼, 等. 生物炭和秸秆还田对紫色土旱坡地土壤团聚体与有机碳的影响[J]. 环境科学,2021,42(11):5481-5490.DENG H, GAO M, LONG Y, et al. Effects of biochar and straw return on soil aggregate and organic carbon on purple soil dry slope land[J]. Environmental Science,2021,42(11):5481-5490. [15] ZHAO H L, SHAR A G, LI S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil and Tillage Research,2018,175:178-186. doi: 10.1016/j.still.2017.09.012 [16] 王擎运, 何咏霞, 陈景, 等. 秸秆或粉煤灰添加对砂姜黑土持水性及小麦抗干旱胁迫的影响[J]. 农业工程学报,2020,36(2):95-102. doi: 10.11975/j.issn.1002-6819.2020.02.012WANG Q Y, HE Y X, CHEN J, et al. Effects of straw or fly ash addition on water holding capacity of typical Shajiang black soil and drought stress tolerance in wheat[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(2):95-102. doi: 10.11975/j.issn.1002-6819.2020.02.012 [17] TAGELE S B, KIM R H, JEONG M, et al. Soil amendment with cow dung modifies the soil nutrition and microbiota to reduce the ginseng replanting problem[J]. Frontiers in Plant Science,2023,14:1072216. doi: 10.3389/fpls.2023.1072216 [18] ZHAO S, YU F, ZHAI C Y, et al. Long-term effects of cattle manure application on the soil aggregate stability of salt-affected soil on the Songnen Plain of North-Eastern China[J]. Journal of Soils and Sediments,2023,23(1):344-354. doi: 10.1007/s11368-022-03317-6 [19] 丛聪, 王天舒, 岳龙凯, 等. 深松配施有机物料还田对黑土区坡耕地土壤物理性质的改良效应[J]. 中国土壤与肥料,2021(3):227-236.CONG C, WANG T S, YUE L K, et al. Amendment effect of subsoiling with organic materials application on soil physical properties of slope cropland in mollisol region[J]. Soil and Fertilizer Sciences in China,2021(3):227-236. [20] 王洁, 校亮, 毕冬雪, 等. 风化煤改变黄河三角洲盐渍化土壤溶液组分的过程[J]. 土壤学报,2018,55(6):1367-1376.WANG J, XIAO L, BI D X, et al. Processes of leonardite altering cation and anion composition of soil solution in salt-affected soil in the Yellow River Delta[J]. Acta Pedologica Sinica,2018,55(6):1367-1376. [21] 李达, 徐康宁, 郭飞. 腐殖酸改良脱碱赤泥的环境风险评估[J]. 环境工程技术学报,2023,13(6):2213-2220. doi: 10.12153/j.issn.1674-991X.20230047LI D, XU K N, GUO F. Environmental risk assessment of humic acid modified dealkalized red mud[J]. Journal of Environmental Engineering Technology,2023,13(6):2213-2220. doi: 10.12153/j.issn.1674-991X.20230047 [22] 刘娇娴, 崔骏, 刘洪宝, 等. 土壤改良剂改良酸化土壤的研究进展[J]. 环境工程技术学报,2022,12(1):173-184.LIU J X, CUI J, LIU H B, et al. Research progress of soil amelioration of acidified soil by soil amendments[J]. Journal of Environmental Engineering Technology,2022,12(1):173-184. [23] 王德领, 诸葛玉平, 杨全刚, 等. 3种改良剂对滨海盐碱地土壤理化性状及玉米生长的影响[J]. 农业资源与环境学报,2021,38(1):20-27.WANG D L, ZHUGE Y P, YANG Q G, et al. Effects of three amendments on the soil properties of and maize growth in coastal saline-alkali soils[J]. Journal of Agricultural Resources and Environment,2021,38(1):20-27. [24] 赵鹏, 黄占斌, 任忠秀, 等. 中国主要退化土壤的改良剂研究与应用进展[J]. 排灌机械工程学报,2022,40(6):618-625.ZHAO P, HUANG Z B, REN Z X, et al. Research and application on advance of soil conditioners of primary degraded soils in China[J]. Journal of Drainage and Irrigation Machinery Engineering,2022,40(6):618-625. [25] 徐晓敏, 吴淑芳, 康倍铭, 等. 五种天然土壤改良剂的养分与保水性研究及评价[J]. 干旱区资源与环境,2014,28(9):85-89.XU X M, WU S F, KANG B M, et al. Study and evaluation on nutrients and water retention capacity of five natural soil amendments[J]. Journal of Arid Land Resources and Environment,2014,28(9):85-89. [26] 农业农村部. 土壤检测第22部分: 土壤田间持水量的测定 环刀法: NT/T 1121.22—2010[S]. 北京: 中国农业出版社, 2010. [27] 宗传娇. 铁尾矿土壤化利用物理化学改良技术研究[D]. 济南: 山东大学, 2018. [28] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 耕地质量等级: GB/T 33469—2016[S]. 北京: 中国标准出版社, 2016. [29] 吴礼树. 土壤肥料学[M]. 北京: 中国农业出版社, 2004. [30] ALMEIDA BEZERRA M, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta,2008,76(5):965-977. doi: 10.1016/j.talanta.2008.05.019 [31] LENTH R V. Response-surface methods in R, using rsm[J]. Journal of Statistical Software, 2009, 32(7): 1-17. [32] GHAFARI S, AZIZ H A, ISA M H, et al. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum[J]. Journal of Hazardous Materials,2009,163(2/3):650-656. [33] 刘树龙, 王发刚, 李公成, 等. 基于响应面法的复合充填料浆配比优化及微观结构影响机制[J]. 复合材料学报,2021,38(8):2724-2736.LIU S L, WANG F G, LI G C, et al. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method[J]. Acta Materiae Compositae Sinica,2021,38(8):2724-2736. [34] 冯瑞云, 王慧杰, 郭峰, 等. 秸秆型土壤改良剂对土壤结构和水分特征的影响[J]. 灌溉排水学报,2015,34(9):44-48.FENG R Y, WANG H J, GUO F, et al. Effects of modified straw soil amendment on soil structure and water characteristics[J]. Journal of Irrigation and Drainage,2015,34(9):44-48. [35] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报,2023,60(3):627-643.LIU Y L, WANG P, WANG J K. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica,2023,60(3):627-643. [36] 李烜桢, 骆永明, 侯德义. 土壤健康评估指标、框架及程序研究进展[J]. 土壤学报,2022,59(3):617-624.LI X Z, LUO Y M, HOU D Y. The indicators, framework and procedures for soil health: a critical review[J]. Acta Pedologica Sinica,2022,59(3):617-624. [37] BRONICK C J, LAL R. Soil structure and management: a review[J]. Geoderma,2005,124(1/2):3-22. [38] 孟安华, 张振都, 吴景贵. 不同处理牛粪对大豆重茬土壤腐殖质组成和结构特征的影响[J]. 西北农林科技大学学报(自然科学版),2016,44(10):141-149.MENG A H, ZHANG Z D, WU J G. Effect of cow dung on elemental composition and structural characteristics of soil humus in soybean continuous cropping field[J]. Journal of Northwest A & F University (Natural Science Edition),2016,44(10):141-149. [39] 邵慧芸, 李紫玥, 刘丹, 等. 有机肥施用量对土壤有机碳组分和团聚体稳定性的影响[J]. 环境科学,2019,40(10):4691-4699.SHAO H Y, LI Z Y, LIU D, et al. Effects of manure application rates on the soil carbon fractions and aggregate stability[J]. Environmental Science,2019,40(10):4691-4699. [40] 聂天宏, 杨兴, 李永春, 等. 高分子材料在土壤物理性质改良方面的研究进展[J]. 土壤通报,2020,51(6):1504-1512.NIE T H, YANG X, LI Y C, et al. Research advances on improvement of soil physical properties by application of polymer materials[J]. Chinese Journal of Soil Science,2020,51(6):1504-1512. [41] 柴冠群, 赵亚南, 黄兴成, 等. 不同炭基改良剂提升紫色土蓄水保墒能力[J]. 水土保持学报,2017,31(1):296-302.CHAI G Q, ZHAO Y N, HUANG X C, et al. Effects of different carbonaceous conditioners on water retention capacity of purple soil[J]. Journal of Soil and Water Conservation,2017,31(1):296-302. [42] 赵惠丽, 于金艺, 刘涛, 等. 秸秆与脱硫石膏配施改良黄河三角洲盐碱地的理化性质[J]. 环境科学,2023,44(7):4119-4129.ZHAO H L, YU J Y, LIU T, et al. Application of desulphurized gypsum with straw to improve physicochemical properties of saline-alkali land in Yellow River Delta[J]. Environmental Science,2023,44(7):4119-4129. [43] YOUNG I, RENAULT S, MARKHAM J. Low levels organic amendments improve fertility and plant cover on non-acid generating gold mine tailings[J]. Ecological Engineering,2015,74:250-257. doi: 10.1016/j.ecoleng.2014.10.026 [44] 钱玲, 林海, 董颖博, 等. 不同改良剂对金矿尾砂适生性能的影响研究[J]. 环境科学与技术,2019,42(7):70-74.QIAN L, LIN H, DONG Y B, et al. Study on amelioration of gold mine tailings using different amendments[J]. Environmental Science & Technology,2019,42(7):70-74. [45] 杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地植被与土壤性质的影响[J]. 环境科学,2019,40(9):4253-4261.YANG S X, LI F M, PENG X Z, et al. Effects of amendments with different C/N/P ratios on plant and soil properties of a Pb-Zn Mine tailings[J]. Environmental Science,2019,40(9):4253-4261. [46] 苗春光, 杨惠惠, 毕银丽, 等. 丛枝菌根真菌与沙棘对露天矿排土场的联合改良效应[J]. 煤田地质与勘探,2021,49(2):202-206.MIAO C G, YANG H H, BI Y L, et al. Effect of arbuscular mycorrhizal fungi and Hippophae rhamnoides on the improvement of the dump of open-pit coal mine in the eastern grassland[J]. Coal Geology & Exploration,2021,49(2):202-206. □