留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合改良剂对石墨尾矿物理性状的影响

易富 杨磊 杜常博 程传旺

易富,杨磊,杜常博,等.复合改良剂对石墨尾矿物理性状的影响[J].环境工程技术学报,2024,14(3):1015-1025 doi: 10.12153/j.issn.1674-991X.20230898
引用本文: 易富,杨磊,杜常博,等.复合改良剂对石墨尾矿物理性状的影响[J].环境工程技术学报,2024,14(3):1015-1025 doi: 10.12153/j.issn.1674-991X.20230898
YI F,YANG L,DU C B,et al.Effect of composite modifier on the physical properties of graphite tailings[J].Journal of Environmental Engineering Technology,2024,14(3):1015-1025 doi: 10.12153/j.issn.1674-991X.20230898
Citation: YI F,YANG L,DU C B,et al.Effect of composite modifier on the physical properties of graphite tailings[J].Journal of Environmental Engineering Technology,2024,14(3):1015-1025 doi: 10.12153/j.issn.1674-991X.20230898

复合改良剂对石墨尾矿物理性状的影响

doi: 10.12153/j.issn.1674-991X.20230898
基金项目: 黑龙江省揭榜挂帅项目(2023ZXJ05A02)
详细信息
    作者简介:

    易富(1978—),男,教授,主要研究方向为环境岩土与道路工程,yifu9716@163.com

    通讯作者:

    杨磊(1999—),男,硕士研究生,主要研究方向为环境岩土,17356538577@163.com

  • 中图分类号: X53

Effect of composite modifier on the physical properties of graphite tailings

  • 摘要:

    为了解决石墨尾矿复垦过程中物理性状较差的问题,研制出一种能够改善其透气性、保水性及结构性的复合改良剂。首先,通过室内试验分别探究玉米秸秆、牛粪和风化煤3种材料对石墨尾矿物理性状的影响以及施用量范围;其次,采用响应面法(RSM)设计试验,得到复合改良剂(玉米秸秆+牛粪+风化煤)的最优配比;最后,分别从透气性、保水性和结构性上分析改良后尾矿的物理性能,并利用扫描电镜(SEM)技术探讨复合改良剂对其微观结构的影响及作用。结果表明:施用单一改良材料时,玉米秸秆对石墨尾矿透气性影响效果最为明显,牛粪对其保水性提升最为显著,风化煤对其大团聚体含量的影响效果最强。复合改良剂的最优配比为玉米秸秆4.10%、牛粪10.49%、风化煤2.94%,此时石墨尾矿的容重、田间持水量和大团聚体含量分别为1.1 g/cm3、61.71%和84.51%;对比改良前石墨尾矿总孔隙率和水稳性大团聚体含量分别提升了17.42%和14.48%,持水能力也得到明显改善;SEM分析显示改良后石墨尾矿表面出现明显胶结物,颗粒之间由角-面接触和边-面接触转变为直接点接触,大量颗粒凝聚在一起形成团聚结构,从微观尺度验证了复合改良剂对石墨尾矿物理性状的影响。该复合改良剂对石墨尾矿物理性状改善作用显著,对于实现石墨尾矿复垦利用具有可行性。

     

  • 图  1  石墨尾矿XRD图谱

    Figure  1.  XRD pattern of graphite tailings

    图  2  石墨尾矿粒径分布曲线

    Figure  2.  Particle size distribution curve of graphite tailings

    图  3  改良剂对石墨尾矿容重的影响

    Figure  3.  Effect of modifier on bulk density of graphite tailings

    图  4  改良剂对石墨尾矿田间持水量影响

    Figure  4.  Effect of improver on field water holding capacity of graphite tailings

    图  5  改良剂对石墨尾矿大团聚体含量影响

    Figure  5.  Effect of modifiers on the content of large aggregates of graphite tailings

    图  6  实测值与预测值对比分析

    Figure  6.  Comparison of measured value and predicted value

    图  7  石墨尾矿容重三维响应曲面图

    Figure  7.  Three-dimensional response surface diagram of graphite tailings bulk density

    图  8  石墨尾矿田间持水量三维响应曲面图

    Figure  8.  Three-dimensional response surface diagram of maximum water holding capacity of graphite tailings

    图  9  石墨尾矿大团聚体含量三维响应曲面图

    Figure  9.  Three-dimensional response surface diagram of large aggregate content in graphite tailings

    图  10  石墨尾矿总孔隙率对比

    Figure  10.  Comparison diagram of total porosity of graphite tailings

    图  11  石墨尾矿持水能力对比

    Figure  11.  Comparison of water holding capacity of graphite tailings

    图  12  石墨尾矿水稳性大团聚体含量对比

    Figure  12.  Graphite tailings water-stable macro-aggregates comparison diagram

    图  13  石墨尾矿改良前微观结构

    Figure  13.  Microstructure of graphite tailings before improvement

    图  14  石墨尾矿改良后微观结构

    Figure  14.  Microstructure diagram of graphite tailings after improvement

    图  15  复合改良剂作用机制

    Figure  15.  Mechanism of action of compound modifier

    表  1  石墨尾矿基本理化性质

    Table  1.   Basic physical and chemical properties of graphite tailings

    pH有机质
    含量/%
    总氮
    含量/%
    总磷
    含量/%
    速效氮
    含量/(mg/kg)
    速效磷
    含量/(mg/kg)
    速效钾
    含量/(mg/kg)
    8.211.050.3140.042376.204.1456.50
    下载: 导出CSV

    表  2  试验材料基本理化性质

    Table  2.   Basic physical and chemical properties of test materials

    材料pHC/N有机碳
    含量/(g/kg)
    全氮
    含量/(g/kg)
    全磷
    含量/(g/kg)
    全钾
    含量/(g/kg)
    玉米秸秆7.0664486.140.6700.1411.482
    牛粪8.7418291.772.5981.1500.987
    风化煤6.0480562.504.4000.2401.910
    下载: 导出CSV

    表  3  单一改良试验设计

    Table  3.   Single improved experimental design

    试验组秸秆施用量/%牛粪施用量/%风化煤施用量/%
    1000
    2100
    010
    001
    3200
    050
    002
    4400
    0100
    003
    5600
    0150
    004
    下载: 导出CSV

    表  4  响应面因素设计与水平编码

    Table  4.   Response surface factor design and horizontal coding

    水平编码 秸秆施用
    量(x1)/%
    牛粪施用
    量(x2)/%
    风化煤施用
    量(x3)/%
    低(−1) 3 9 1
    中心(0) 4 10 2
    高(1) 5 11 3
    下载: 导出CSV

    表  5  响应面试验设计与测试结果

    Table  5.   Response surface experimental design and test results

    序号 秸秆
    施用量/%
    牛粪施
    用量/%
    风化煤
    施用量/%
    容重/
    (g/cm3
    田间持
    水量/%
    大团聚
    体含量/%
    1 3 9 2 1.23 57.7 78.65
    2 5 9 2 1.08 56.4 81.92
    3 3 11 2 1.22 59.6 80.58
    4 5 11 2 1.07 58.8 83.71
    5 3 10 1 1.25 58.6 76.88
    6 5 10 1 1.09 57.9 79.81
    7 3 10 3 1.21 59.7 82.79
    8 5 10 3 1.06 58.8 85.83
    9 4 9 1 1.20 56.9 78.99
    10 4 11 1 1.16 59.2 79.40
    11 4 9 3 1.10 57.9 83.49
    12 4 11 3 1.08 61.2 85.21
    13 4 10 2 1.13 62.5 81.26
    14 4 10 2 1.14 62.1 80.84
    15 4 10 2 1.12 62.3 81.40
    16 4 10 2 1.13 62.1 81.09
    17 4 10 2 1.15 61.9 81.31
    下载: 导出CSV

    表  6  响应面回归模型方差分析

    Table  6.   Analysis of variance of response surface regression model

    响应值 P 失拟项 R2 $R_{\mathrm{Adj}}^2 $ $R_{\mathrm{Pred}}^2 $ AP CV/%
    Y1 <0.000 1 0.183 9 0.939 0 0.924 9 0.886 6 26.71 1.45
    Y2 <0.000 1 0.213 1 0.991 2 0.979 9 0.905 1 26.74 0.48
    Y3 <0.000 1 0.077 1 0.974 5 0.968 6 0.950 6 43.06 0.51
    下载: 导出CSV
  • [1] US G S. Mineral commodity summaries 2023[R]. Reston, VA: National Minerals Information Center, 2023.
    [2] VASUMATHI N, VIJAYA KUMAR T V, RATCHAMBIGAI S, et al. Flotation studies on low grade graphite ore from eastern India[J]. International Journal of Mining Science and Technology,2015,25(3):415-420. doi: 10.1016/j.ijmst.2015.03.014
    [3] BARMA S D, BASKEY P K, RAO D S, et al. Ultrasonic-assisted flotation for enhancing the recovery of flaky graphite from low-grade graphite ore[J]. Ultrasonics Sonochemistry,2019,56:386-396. doi: 10.1016/j.ultsonch.2019.04.033
    [4] 张家荣, 刘建林. 尾矿库溃坝及尾矿泄漏事故树安全评价与预防[J]. 环境工程技术学报,2019,9(2):201-206. doi: 10.12153/j.issn.1674-991X.2018.10.190

    ZHANG J R, LIU J L. FTA-based safety evaluation and prevention of dam break and tailings leakage in tailings reservoir[J]. Journal of Environmental Engineering Technology,2019,9(2):201-206. doi: 10.12153/j.issn.1674-991X.2018.10.190
    [5] 吴建锋, 金昊, 徐晓虹, 等. 利用石墨尾矿研制陶瓷仿古砖[J]. 硅酸盐学报,2019,47(12):1760-1767.

    WU J F, JIN H, XU X H, et al. Preparation of ceramic rustic from graphite tailings[J]. Journal of the Chinese Ceramic Society,2019,47(12):1760-1767.
    [6] HU S H, LI D R, LI Y L, et al. Preparation of foamed ceramics from graphite tailings using a self-foaming method[J]. Minerals,2023,13(4):521. doi: 10.3390/min13040521
    [7] LIU H B, XUE J, LI B, et al. Effect of graphite tailings as substitute sand on mechanical properties of concrete[J]. European Journal of Environmental and Civil Engineering,2022,26(7):2635-2653. doi: 10.1080/19648189.2020.1763476
    [8] LIU H B, LIU K, LAN Z, et al. Mechanical and electrical characteristics of graphite tailing concrete[J]. Advances in Materials Science and Engineering,2018,2018:9297628.
    [9] KATHIRVEL P, KWON S J, LEE H S, et al. Graphite ore tailings as partial replacement of sand in concrete[J]. ACI Materials Journal,2018,115(3):481-492.
    [10] PENG Y Z, LIU Y J, ZHAN B H, et al. Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source[J]. Construction and Building Materials,2021,267:121792. doi: 10.1016/j.conbuildmat.2020.121792
    [11] FU Y L, JIN Y Q, MA J, et al. Lithium-ion transfer strengthened by graphite tailings and coking coal for high-rate performance anode[J]. Chemical Engineering Journal,2022,442:136184. doi: 10.1016/j.cej.2022.136184
    [12] WASSENAAR T D, HENSCHEL J R, PFAFFENTHALER M M, et al. Ensuring the future of the Namib's biodiversity: ecological restoration as a key management response to a mining boom[J]. Journal of Arid Environments,2013,93:126-135. doi: 10.1016/j.jaridenv.2012.05.012
    [13] 刘斯文, 黄园英, 韩子金, 等. 离子型稀土矿山土壤生态修复研究与实践[J]. 环境工程,2015,33(11):160-165.

    LIU S W, HUANG Y Y, HAN Z J, et al. Practices of the soil ecological remediation in ion-absorbed rare earth mine[J]. Environmental Engineering,2015,33(11):160-165.
    [14] 邓华, 高明, 龙翼, 等. 生物炭和秸秆还田对紫色土旱坡地土壤团聚体与有机碳的影响[J]. 环境科学,2021,42(11):5481-5490.

    DENG H, GAO M, LONG Y, et al. Effects of biochar and straw return on soil aggregate and organic carbon on purple soil dry slope land[J]. Environmental Science,2021,42(11):5481-5490.
    [15] ZHAO H L, SHAR A G, LI S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil and Tillage Research,2018,175:178-186. doi: 10.1016/j.still.2017.09.012
    [16] 王擎运, 何咏霞, 陈景, 等. 秸秆或粉煤灰添加对砂姜黑土持水性及小麦抗干旱胁迫的影响[J]. 农业工程学报,2020,36(2):95-102. doi: 10.11975/j.issn.1002-6819.2020.02.012

    WANG Q Y, HE Y X, CHEN J, et al. Effects of straw or fly ash addition on water holding capacity of typical Shajiang black soil and drought stress tolerance in wheat[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(2):95-102. doi: 10.11975/j.issn.1002-6819.2020.02.012
    [17] TAGELE S B, KIM R H, JEONG M, et al. Soil amendment with cow dung modifies the soil nutrition and microbiota to reduce the ginseng replanting problem[J]. Frontiers in Plant Science,2023,14:1072216. doi: 10.3389/fpls.2023.1072216
    [18] ZHAO S, YU F, ZHAI C Y, et al. Long-term effects of cattle manure application on the soil aggregate stability of salt-affected soil on the Songnen Plain of North-Eastern China[J]. Journal of Soils and Sediments,2023,23(1):344-354. doi: 10.1007/s11368-022-03317-6
    [19] 丛聪, 王天舒, 岳龙凯, 等. 深松配施有机物料还田对黑土区坡耕地土壤物理性质的改良效应[J]. 中国土壤与肥料,2021(3):227-236.

    CONG C, WANG T S, YUE L K, et al. Amendment effect of subsoiling with organic materials application on soil physical properties of slope cropland in mollisol region[J]. Soil and Fertilizer Sciences in China,2021(3):227-236.
    [20] 王洁, 校亮, 毕冬雪, 等. 风化煤改变黄河三角洲盐渍化土壤溶液组分的过程[J]. 土壤学报,2018,55(6):1367-1376.

    WANG J, XIAO L, BI D X, et al. Processes of leonardite altering cation and anion composition of soil solution in salt-affected soil in the Yellow River Delta[J]. Acta Pedologica Sinica,2018,55(6):1367-1376.
    [21] 李达, 徐康宁, 郭飞. 腐殖酸改良脱碱赤泥的环境风险评估[J]. 环境工程技术学报,2023,13(6):2213-2220. doi: 10.12153/j.issn.1674-991X.20230047

    LI D, XU K N, GUO F. Environmental risk assessment of humic acid modified dealkalized red mud[J]. Journal of Environmental Engineering Technology,2023,13(6):2213-2220. doi: 10.12153/j.issn.1674-991X.20230047
    [22] 刘娇娴, 崔骏, 刘洪宝, 等. 土壤改良剂改良酸化土壤的研究进展[J]. 环境工程技术学报,2022,12(1):173-184.

    LIU J X, CUI J, LIU H B, et al. Research progress of soil amelioration of acidified soil by soil amendments[J]. Journal of Environmental Engineering Technology,2022,12(1):173-184.
    [23] 王德领, 诸葛玉平, 杨全刚, 等. 3种改良剂对滨海盐碱地土壤理化性状及玉米生长的影响[J]. 农业资源与环境学报,2021,38(1):20-27.

    WANG D L, ZHUGE Y P, YANG Q G, et al. Effects of three amendments on the soil properties of and maize growth in coastal saline-alkali soils[J]. Journal of Agricultural Resources and Environment,2021,38(1):20-27.
    [24] 赵鹏, 黄占斌, 任忠秀, 等. 中国主要退化土壤的改良剂研究与应用进展[J]. 排灌机械工程学报,2022,40(6):618-625.

    ZHAO P, HUANG Z B, REN Z X, et al. Research and application on advance of soil conditioners of primary degraded soils in China[J]. Journal of Drainage and Irrigation Machinery Engineering,2022,40(6):618-625.
    [25] 徐晓敏, 吴淑芳, 康倍铭, 等. 五种天然土壤改良剂的养分与保水性研究及评价[J]. 干旱区资源与环境,2014,28(9):85-89.

    XU X M, WU S F, KANG B M, et al. Study and evaluation on nutrients and water retention capacity of five natural soil amendments[J]. Journal of Arid Land Resources and Environment,2014,28(9):85-89.
    [26] 农业农村部. 土壤检测第22部分: 土壤田间持水量的测定 环刀法: NT/T 1121.22—2010[S]. 北京: 中国农业出版社, 2010.
    [27] 宗传娇. 铁尾矿土壤化利用物理化学改良技术研究[D]. 济南: 山东大学, 2018.
    [28] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 耕地质量等级: GB/T 33469—2016[S]. 北京: 中国标准出版社, 2016.
    [29] 吴礼树. 土壤肥料学[M]. 北京: 中国农业出版社, 2004.
    [30] ALMEIDA BEZERRA M, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta,2008,76(5):965-977. doi: 10.1016/j.talanta.2008.05.019
    [31] LENTH R V. Response-surface methods in R, using rsm[J]. Journal of Statistical Software, 2009, 32(7): 1-17.
    [32] GHAFARI S, AZIZ H A, ISA M H, et al. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum[J]. Journal of Hazardous Materials,2009,163(2/3):650-656.
    [33] 刘树龙, 王发刚, 李公成, 等. 基于响应面法的复合充填料浆配比优化及微观结构影响机制[J]. 复合材料学报,2021,38(8):2724-2736.

    LIU S L, WANG F G, LI G C, et al. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method[J]. Acta Materiae Compositae Sinica,2021,38(8):2724-2736.
    [34] 冯瑞云, 王慧杰, 郭峰, 等. 秸秆型土壤改良剂对土壤结构和水分特征的影响[J]. 灌溉排水学报,2015,34(9):44-48.

    FENG R Y, WANG H J, GUO F, et al. Effects of modified straw soil amendment on soil structure and water characteristics[J]. Journal of Irrigation and Drainage,2015,34(9):44-48.
    [35] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报,2023,60(3):627-643.

    LIU Y L, WANG P, WANG J K. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica,2023,60(3):627-643.
    [36] 李烜桢, 骆永明, 侯德义. 土壤健康评估指标、框架及程序研究进展[J]. 土壤学报,2022,59(3):617-624.

    LI X Z, LUO Y M, HOU D Y. The indicators, framework and procedures for soil health: a critical review[J]. Acta Pedologica Sinica,2022,59(3):617-624.
    [37] BRONICK C J, LAL R. Soil structure and management: a review[J]. Geoderma,2005,124(1/2):3-22.
    [38] 孟安华, 张振都, 吴景贵. 不同处理牛粪对大豆重茬土壤腐殖质组成和结构特征的影响[J]. 西北农林科技大学学报(自然科学版),2016,44(10):141-149.

    MENG A H, ZHANG Z D, WU J G. Effect of cow dung on elemental composition and structural characteristics of soil humus in soybean continuous cropping field[J]. Journal of Northwest A & F University (Natural Science Edition),2016,44(10):141-149.
    [39] 邵慧芸, 李紫玥, 刘丹, 等. 有机肥施用量对土壤有机碳组分和团聚体稳定性的影响[J]. 环境科学,2019,40(10):4691-4699.

    SHAO H Y, LI Z Y, LIU D, et al. Effects of manure application rates on the soil carbon fractions and aggregate stability[J]. Environmental Science,2019,40(10):4691-4699.
    [40] 聂天宏, 杨兴, 李永春, 等. 高分子材料在土壤物理性质改良方面的研究进展[J]. 土壤通报,2020,51(6):1504-1512.

    NIE T H, YANG X, LI Y C, et al. Research advances on improvement of soil physical properties by application of polymer materials[J]. Chinese Journal of Soil Science,2020,51(6):1504-1512.
    [41] 柴冠群, 赵亚南, 黄兴成, 等. 不同炭基改良剂提升紫色土蓄水保墒能力[J]. 水土保持学报,2017,31(1):296-302.

    CHAI G Q, ZHAO Y N, HUANG X C, et al. Effects of different carbonaceous conditioners on water retention capacity of purple soil[J]. Journal of Soil and Water Conservation,2017,31(1):296-302.
    [42] 赵惠丽, 于金艺, 刘涛, 等. 秸秆与脱硫石膏配施改良黄河三角洲盐碱地的理化性质[J]. 环境科学,2023,44(7):4119-4129.

    ZHAO H L, YU J Y, LIU T, et al. Application of desulphurized gypsum with straw to improve physicochemical properties of saline-alkali land in Yellow River Delta[J]. Environmental Science,2023,44(7):4119-4129.
    [43] YOUNG I, RENAULT S, MARKHAM J. Low levels organic amendments improve fertility and plant cover on non-acid generating gold mine tailings[J]. Ecological Engineering,2015,74:250-257. doi: 10.1016/j.ecoleng.2014.10.026
    [44] 钱玲, 林海, 董颖博, 等. 不同改良剂对金矿尾砂适生性能的影响研究[J]. 环境科学与技术,2019,42(7):70-74.

    QIAN L, LIN H, DONG Y B, et al. Study on amelioration of gold mine tailings using different amendments[J]. Environmental Science & Technology,2019,42(7):70-74.
    [45] 杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地植被与土壤性质的影响[J]. 环境科学,2019,40(9):4253-4261.

    YANG S X, LI F M, PENG X Z, et al. Effects of amendments with different C/N/P ratios on plant and soil properties of a Pb-Zn Mine tailings[J]. Environmental Science,2019,40(9):4253-4261.
    [46] 苗春光, 杨惠惠, 毕银丽, 等. 丛枝菌根真菌与沙棘对露天矿排土场的联合改良效应[J]. 煤田地质与勘探,2021,49(2):202-206.

    MIAO C G, YANG H H, BI Y L, et al. Effect of arbuscular mycorrhizal fungi and Hippophae rhamnoides on the improvement of the dump of open-pit coal mine in the eastern grassland[J]. Coal Geology & Exploration,2021,49(2):202-206. □
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  25
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 录用日期:  2024-03-01
  • 修回日期:  2024-01-07

目录

    /

    返回文章
    返回