留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GA-BP-Garson模型的市政污泥干燥过程含水率预测

张凯强 王小雷 赵建锋 胡鑫 王宁峰

张凯强,王小雷,赵建锋,等.基于GA-BP-Garson模型的市政污泥干燥过程含水率预测[J].环境工程技术学报,2024,14(4):1330-1336 doi: 10.12153/j.issn.1674-991X.20230907
引用本文: 张凯强,王小雷,赵建锋,等.基于GA-BP-Garson模型的市政污泥干燥过程含水率预测[J].环境工程技术学报,2024,14(4):1330-1336 doi: 10.12153/j.issn.1674-991X.20230907
ZHANG K Q,WANG X L,ZHAO J F,et al.Prediction of moisture content in municipal sludge drying process based on GA-BP-Garson model[J].Journal of Environmental Engineering Technology,2024,14(4):1330-1336 doi: 10.12153/j.issn.1674-991X.20230907
Citation: ZHANG K Q,WANG X L,ZHAO J F,et al.Prediction of moisture content in municipal sludge drying process based on GA-BP-Garson model[J].Journal of Environmental Engineering Technology,2024,14(4):1330-1336 doi: 10.12153/j.issn.1674-991X.20230907

基于GA-BP-Garson模型的市政污泥干燥过程含水率预测

doi: 10.12153/j.issn.1674-991X.20230907
基金项目: 青海省科技成果转化专项(2023-SF-121)
详细信息
    作者简介:

    张凯强(1996—),男,硕士研究生,主要从事湿生物质干燥控制研究,763248951@qq.com

    通讯作者:

    王宁峰(1976—),男,教授,主要从事过程装备与控制研究,wnfeng@163.com

  • 中图分类号: X703

Prediction of moisture content in municipal sludge drying process based on GA-BP-Garson model

  • 摘要:

    市政污泥干燥过程中内部水分检测困难,为准确预测市政污泥热风干燥过程中内部水分的变化规律,将干燥时间、干燥温度、泥层厚度、流量压差作为输入变量,含水率作为输出变量,采用BP神经网络以及GA-BP神经网络分别建立市政污泥热风干燥过程的水分预测模型;对GA-BP神经网络进行敏感性分析,研究了4个输入变量对预测结果的影响。结果表明,BP和GA-BP 2种水分预测模型测试集的决定系数(R2)分别为0.999 55和0.999 64,均方根误差(RMSE)分别为0.513 17和0.455 23,即GA-BP预测模型的预测效果更佳,能更准确地预测市政污泥干燥过程中含水率的动态变化。敏感性分析表明,干燥时间对GA-BP含水率预测模型的影响最为显著。研究结果可为污泥干燥工艺和过程的优化提供理论依据,为污泥资源化利用提供参考。

     

  • 图  1  试验装置示意

    1—风机;2—压力变送器;3—电加热器;4—阀门;5—电源控制柜;6—电子天平;7—计算机;8—温度传感器。

    Figure  1.  Experimental apparatus schematic diagram

    图  2  GA-BP神经网络流程

    Figure  2.  Flow of GA-BP neural network algorithm

    图  3  BP神经网络含水率预测模型

    Figure  3.  MR prediction model with BP neural network

    图  4  GA-BP神经网络含水率预测模型

    Figure  4.  MR prediction model with GA-BP neural network

    图  5  预测模型对比分析

    Figure  5.  Comparative analysis of prediction models

    图  6  GA-BP神经网络敏感性分析结果

    Figure  6.  Sensitivity analysis results of GA-BP neural network

    表  1  市政污泥的组分特性

    Table  1.   Component characteristics of municipal sludge

    污泥组分质量分数(干基)/%
    有机组分挥发分30.6~71.8
    固定碳0.6~9.3
    灰分20.0~70.0
    元素分析C15.8~48.7
    H2.0~9.0
    O10.7~25.3
    N1.0~6.0
    S0.2~3.6
    下载: 导出CSV

    表  2  污泥热风干燥试验方案

    Table  2.   Experimental scheme of sludge hot air drying

    试验分组干燥温度/℃泥层厚度/mm流量压差/kPa
    50101
    160101
    70101
    6051
    260101
    60151
    60100.61
    360100.85
    60101
    下载: 导出CSV

    表  3  遗传算法的参数

    Table  3.   Parameters of genetic algorithm

    参数 数值
    个体范围 (−3,3)
    种群规模 60
    迭代次数 400
    交叉概率 0.4
    变异概率 0.015
    下载: 导出CSV
  • [1] ZHOU A, WANG X B, YU S L, et al. Process design and optimization on self-sustaining pyrolysis and carbonization of municipal sewage sludge[J]. Waste Management,2023,159:125-133. doi: 10.1016/j.wasman.2023.01.035
    [2] SYED-HASSAN S S A, WANG Y, HU S, et al. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations[J]. Renewable and Sustainable Energy Reviews,2017,80:888-913. doi: 10.1016/j.rser.2017.05.262
    [3] 张钧羿, 魏建兵, 韩冬, 等. 沈阳市政污泥制备烧结砖的试验探究[J]. 环境工程技术学报,2023,13(3):1187-1193. doi: 10.12153/j.issn.1674-991X.20220469

    ZHANG J Y, WEI J B, HAN D, et al. Experimental study on the making of sintered brick using municipal sludge in Shenyang City[J]. Journal of Environmental Engineering Technology,2023,13(3):1187-1193. doi: 10.12153/j.issn.1674-991X.20220469
    [4] 王毅斌, 冯敬武, 谭厚章, 等. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展,2023,42(2):985-999.

    WANG Y B, FENG J W, TAN H Z, et al. Research progress on phosphorus speciation transformation and recovery during thermal chemical conversion of municipal sewage sludge[J]. Fine Chemicals,2023,42(2):985-999.
    [5] ZHU Q X, SUN X F, GE S F, et al. Insights into the characteristics and mechanism of vacuum drying technology for municipal sludge processing[J]. Chemosphere,2023,310:136729. doi: 10.1016/j.chemosphere.2022.136729
    [6] ZHANG T, YAN Z W, WANG L Y, et al. Theoretical analysis and experimental study on a low-temperature heat pump sludge drying system[J]. Energy,2021,214:118985. doi: 10.1016/j.energy.2020.118985
    [7] 周印羲, 石万, 李晓姣, 等. 污泥低温余热干化的模拟研究及参数优化[J]. 中国环境科学,2023,43(8):4099-4105. doi: 10.3969/j.issn.1000-6923.2023.08.026

    ZHOU Y X, SHI W, LI X J, et al. Simulation study and optimization of parameters for low temperature drying of sludge using waste heat[J]. China Environmental Science,2023,43(8):4099-4105. doi: 10.3969/j.issn.1000-6923.2023.08.026
    [8] 吴文庆. 污泥低温干化技术与模型模拟研究进展[J]. 环境工程,2023,41(增刊2):644-650.

    WU W Q. The research progress of sludge low temperature drying technology and model simulation[J]. Environmental Engineering,2023,41(Suppl 2):644-650.
    [9] 辛旺, 宋永会, 张亚迪, 等. 污泥基碳吸附材料的制备及其吸附性能研究进展[J]. 环境工程技术学报,2017,7(3):306-317. doi: 10.3969/j.issn.1674-991X.2017.03.044

    XIN W, SONG Y H, ZHANG Y D, et al. Research progress of preparation of sewage sludge-based carbonaceous adsorbents and their adsorption characteristics[J]. Journal of Environmental Engineering Technology,2017,7(3):306-317. doi: 10.3969/j.issn.1674-991X.2017.03.044
    [10] BHAGYA RAJ G V S, DASH K K. Comprehensive study on applications of artificial neural network in food process modeling[J]. Critical Reviews in Food Science and Nutrition,2022,62(10):2756-2783. doi: 10.1080/10408398.2020.1858398
    [11] HUANG Y W, CHEN M Q. Artificial neural network modeling of thin layer drying behavior of municipal sewage sludge[J]. Measurement,2015,73:640-648. doi: 10.1016/j.measurement.2015.06.014
    [12] ZHANG Y G, PAN G F, CHEN B, et al. Short-term wind speed prediction model based on GA-ANN improved by VMD[J]. Renewable Energy,2020,156:1373-1388. doi: 10.1016/j.renene.2019.12.047
    [13] SUN T S, LING F. Prediction method of wheat moisture content in the hot air drying process based on backpropagation neural network optimized by genetic algorithms[J]. Journal of Food Processing and Preservation,2022,46(6):e16565.
    [14] FABANI M P, CAPOSSIO J P, ROMÁN M C, et al. Producing non-traditional flour from watermelon rind pomace: artificial neural network (ANN) modeling of the drying process[J]. Journal of Environmental Management,2021,281:111915. doi: 10.1016/j.jenvman.2020.111915
    [15] YANG T Q, ZHENG X, VIDYARTHI S K, et al. Artificial neural network modeling and genetic algorithm multiobjective optimization of process of drying-assisted walnut breaking[J]. Foods,2023,12(9):1897. doi: 10.3390/foods12091897
    [16] BHAGYA RAJ G V S, DASH K K. Microwave vacuum drying of dragon fruit slice: artificial neural network modelling, genetic algorithm optimization, and kinetics study[J]. Computers and Electronics in Agriculture,2020,178:105814. doi: 10.1016/j.compag.2020.105814
    [17] 黄艳琴, 甄宇航, 王晨州, 等. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报,2023,37(10):29-34.

    HUANG Y Q, ZHEN Y H, WANG C Z, et al. Research progress on pyrolysis and resource utilization of municipal sewage sludge in context of 'peak carbon dioxide emissions and carbon neutrality'[J]. Materials Reports,2023,37(10):29-34.
    [18] 杨俊祺, 范晓军, 赵跃华, 等. 基于PSO-BP神经网络的山西省碳排放预测[J]. 环境工程技术学报,2023,13(6):2016-2024. doi: 10.12153/j.issn.1674-991X.20230190

    YANG J Q, FAN X J, ZHAO Y H, et al. Prediction of carbon emissions in Shanxi Province based on PSO-BP neural network[J]. Journal of Environmental Engineering Technology,2023,13(6):2016-2024. doi: 10.12153/j.issn.1674-991X.20230190
    [19] SATORABI M, SALEHI F, RASOULI M. The influence of xanthan and balangu seed gums Coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling[J]. International Journal of Fruit Science,2021,21(1):468-480. doi: 10.1080/15538362.2021.1898520
    [20] MING J L K, ANUAR M S, HOW M S, et al. Development of an artificial neural network utilizing particle swarm optimization for modeling the spray drying of coconut milk[J]. Foods,2021,10(11):2708. □ doi: 10.3390/foods10112708
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  57
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-21
  • 录用日期:  2024-04-01
  • 修回日期:  2024-03-07

目录

    /

    返回文章
    返回