Distribution characteristics, source analysis and ecological risk of polycyclic aromatic hydrocarbons in surface water of Guoyang Coal Mine Area, Anhui Province
-
摘要:
为研究涡阳矿区地表水中多环芳烃(PAHs)的空间分布、来源和生态风险,采用气相色谱-质谱联用技术检测分析了研究区地表水中16种优控PAHs的浓度。结果表明:涡阳矿区地表水中∑PAHs浓度为93.59~1 701.77 ng/L,平均值为674.16 ng/L;单体PAHs浓度为nd~362.44 ng/L,单体PAHs中2环、3环和4环PAHs占比较高,6环PAHs占比较低;与国内其他地区地表水相比,研究区地表水中PAHs浓度处于中等偏高水平;空间分布上,研究区地表水中PAHs空间差异显著,距离矿区越近,PAHs浓度越高。特征比值法、正定矩阵因子分解法(PMF)和主成分分析(PCA)得到了相似的源解析结果,地表水中PAHs主要来自交通源、煤炭燃烧源和石油源。PCA得到的各污染源贡献率分别为煤炭燃烧源37.32%、交通源35.51%和石油源13.92%;PMF模型得到的各污染源贡献率分别为交通源42.66%、煤炭燃烧源30.85%和石油源26.49%。生态风险评价结果表明,BaA、BbF和BkF处于高风险水平,其余单体PAHs皆处于中等风险水平;22个采样点中,有6个采样点处于中等生态风险水平,其余采样点皆处于高风险水平。总体看来,涡阳矿区地表水整体生态风险处于中等偏高风险水平,对生物存在潜在危害,需加强生态风险防范。
-
关键词:
- 地表水 /
- 多环芳烃(PAHs) /
- 空间分布 /
- 来源解析 /
- 生态风险评价
Abstract:In order to study the spatial distribution, source and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface water of Guoyang mining area, gas chromatography-mass spectrometry (GC-MS) was used to detect and analyze the concentration of 16 kinds of priority control PAHs in surface water of the study area. The results showed that the concentration range of ∑PAHs in the surface water of Guoyang mining area was 93.59-1 701.77 ng/L, with an average content of 674.16 ng/L. The concentration range of monomer PAHs was nd-362.44 ng/L. Among monomer PAHs, the proportion of 2-ring, 3-ring and 4-ring PAHs was relatively high, while that of 6-ring PAHs was relatively low. Compared with the surface water in other regions of China, the concentration of PAHs in the surface water of the research area was at a moderate to high level. In terms of spatial distribution, there was a significant difference in the concentration of PAHs in the surface water of the study area. The closer to the mining area, the higher the concentration of PAHs. The molecular diagnostic ratio (MDR), positive matrix factorization (PMF) and principal component analysis (PCA) methods obtained similar source apportionment results. The results showed that PAHs in surface water mainly came from transportation sources, coal combustion sources and petroleum sources. The contribution rates of each pollution source obtained from PCA were 37.32% for coal combustion sources, 35.51% for transportation sources and 13.92% for petroleum sources, respectively. The contribution rates of each pollution source obtained from PMF model were 42.66% for transportation sources, 30.85% for coal combustion sources, and 26.49% for petroleum sources, respectively. The ecological risk assessment results indicate that BaA, BbF and BkF are at a high risk level, while the remaining monomer PAHs are at a moderate risk level. Among the 22 sampling points, only 6 are at the medium ecological risk level, and the rest are at the high ecological risk level. In general, the overall ecological risk of surface water in Guoyang mining area is at the medium to high risk level, which is potentially harmful to organisms, and ecological risk prevention needs to be strengthened.
-
表 1 PAHs的特征比值和来源
Table 1. Characteristic ratios and sources of PAHs
表 2 单体PAHs的NCs及MPCs参数值
Table 2. NCs and MPCs parameter values of monomer PAHs
PAHs 最低风险标准值(ng/L) 最高风险标准值(ng/L) NAP 12 1 200 ACY 0.7 70 ACE 0.7 70 FLU 0.7 70 PHE 3 300 ANT 0.7 70 FLA 3 300 PYR 0.7 70 BaA 0.1 10 CHR 3.4 340 BbF 0.1 10 BkF 0.4 40 BaP 0.5 50 InP 0.4 40 DBA 0.5 50 BgP 0.3 30 表 3 涡阳矿区地表水中PAHs检出情况
Table 3. Detection of PAHs in surface water of Guoyang mining area
PAHs组分 PAHs质量浓度/(ng/L) 检出率/% 最大值 最小值 平均值 标准偏差 NAP 362.44 nd 89.35 110.65 91.91 ACY 78.43 nd 28.90 22.83 95.45 ACE 114.79 1.19 44.88 37.33 100 FLU 93.86 2.96 37.83 31.41 100 PHE 161.00 4.95 74.71 51.77 100 ANT 125.22 5.80 49.90 38.65 100 FLA 90.23 1.07 36.71 26.29 100 PYR 132.31 2.02 47.65 39.65 100 BaA 135.16 nd 51.90 40.62 81.82 CHR 242.79 nd 59.28 38.57 90.91 BbF 75.53 nd 32.43 21.96 95.45 BkF 102.30 nd 42.38 34.06 90.91 BaP 65.78 nd 27.63 19.50 90.91 DBA 50.67 nd 19.79 14.18 90.91 InP 44.01 nd 17.38 15.35 86.36 BgP 51.70 nd 14.53 10.87 95.45 ∑PAHs 1 701.77 93.59 674.16 注:nd表示未检出。 表 4 国内不同地区地表水体中∑PAHs浓度对比
Table 4. Comparison of ∑PAHs concentration in the surface water in different regions of China
名称 最小值/
(ng/L)最大值/
(ng/L)平均值/
(ng/L)数据来源 涡阳矿区地表水 93.59 1 701.77 674.16 本研究 大辽河 71.12 4 255.43 748.76 文献[20] 台湾盐河 485.00 10 210.00 2 292.00 文献[21] 黄河三角洲 50.00 4 050.00 590.00 文献[22] 深圳观澜河 121.80 8 371.70 3 271.18 文献[23] 吉林省东辽河 396.42 624.06 436.99 文献[24] 陕北矿区窟野河 50.06 278.16 128.22 文献[12] 广西鹤山煤田河流 199.45 1 350.84 426.98 文献[25] 表 5 单体PAHs和∑PAHs风险水平分类
Table 5. Risk classification of monomer PAHs and ∑PAHs
PAHs组分 主成分 1 2 3 NAP 0.898 0.143 0.259 ACY 0.504 0.529 0.485 ACE 0.477 0.676 0.843 FLU 0.732 0.444 0.148 PHE 0.390 0.740 0.299 ANT 0.534 0.694 0.326 FLA 0.773 0.561 0.211 PYR 0.875 0.372 0.214 BaA 0.768 0.423 0.219 CHR 0.651 0.608 −0.320 BbF 0.570 0.800 0.328 BkF 0.161 0.920 0.113 BaP 0.739 0.420 0.442 InP 0.415 0.670 0.545 DBA 0.482 0.765 0.232 BgP 0.180 0.198 0.298 方差贡献率/% 37.32 35.51 13.92 累计方差贡献率/% 37.32 72.83 86.75 表 6 单体PAHs风险水平分类
Table 6. Risk classification of individual PAHs
风险等级 RQNCs RQMPCs 无风险 0 <1 中等风险 ≥1 <1 高风险 ≥1 表 7 ∑PAHs风险水平分类
Table 7. Risk classification of ∑PAHs
风险等级 RQ∑PAHs(NCs) RQ∑PAHs(MPCs) 无风险 0 <1 低风险 1~800 <1 中等风险1 ≥800 <1 中等风险2 <800 ≥1 高风险 ≥800 ≥1 表 8 煤矿区地表水中单体PAHs生态风险评价结果
Table 8. Ecological risk assessment results of monomer PAHs in surface water of coal mining areas
PAHs RQNCs RQMPCs 风险等级 NAP 7.45 0.07 中等风险 ACY 41.28 0.41 中等风险 ACE 64.11 0.64 中等风险 FLU 54.04 0.54 中等风险 PHE 24.90 0.25 中等风险 ANT 71.28 0.71 中等风险 FLA 12.24 0.12 中等风险 PYR 68.07 0.68 中等风险 BaA 519.04 5.19 高风险 CHR 17.44 0.17 中等风险 BbF 324.25 3.24 高风险 BkF 105.94 1.06 高风险 BaP 55.25 0.55 中等风险 InP 43.45 0.43 中等风险 DBA 39.59 0.40 中等风险 BgP 48.43 0.48 中等风险 -
[1] ZHAO X, QIU H R, ZHAO Y L, et al. Distribution of polycyclic aromatic hydrocarbons in surface water from the upper reach of the Yellow River, Northwestern China[J]. Environmental Science and Pollution Research International,2015,22(9):6950-6956. doi: 10.1007/s11356-014-3846-z [2] TARAFDAR A, SINHA A. Health risk assessment and source study of PAHs from roadside soil dust of a heavy mining area in India[J]. Archives of Environmental & Occupational Health,2019,74(5):252-262. [3] 花洁, 王健媛, 陈运帷, 等. 煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述[J]. 环境工程技术学报,2024,14(1):139-147. doi: 10.12153/j.issn.1674-991X.20230524HUA J, WANG J Y, CHEN Y W, et al. A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils[J]. Journal of Environmental Engineering Technology,2024,14(1):139-147. doi: 10.12153/j.issn.1674-991X.20230524 [4] SHI R G, LI X H, YANG Y Y, et al. Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China[J]. Environmental Pollution, 2021, 268(Part B): 115938. [5] QISHLAQI A, BEIRAMALI F. Potential sources and health risk assessment of polycyclic aromatic hydrocarbons in street dusts of Karaj urban area, northern Iran[J]. Journal of Environmental Health Science & Engineering,2019,17(2):1029-1044. [6] KANG M, KIM K, CHOI N, et al. Recent occurrence of PAHs and n-alkanes in PM2.5 in Seoul, Korea and characteristics of their sources and toxicity[J]. International Journal of Environmental Research and Public Health,2020,17(4):1397. doi: 10.3390/ijerph17041397 [7] ZHENG H, QU C K, ZHANG J Q, et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soils from Ningde, China: levels, sources, and human health risk assessment[J]. Environmental Geochemistry and Health,2019,41(2):907-919. doi: 10.1007/s10653-018-0188-7 [8] 史敬文, 张瑞杰, 韩民伟, 等. 北部湾涠洲岛珊瑚礁区多环芳烃污染特征研究[J]. 中国环境科学,2023,43(4):1802-1811.SHI J W, ZHANG R J, HAN M W, et al. Pollution characteristics of polycyclic aromatic hydrocarbons in the coral reef regions of Weizhou Island, Beibu Gulf[J]. China Environmental Science,2023,43(4):1802-1811. [9] CHEN W, PENG B, HUANG H F, et al. Distribution and potential sources of OCPs and PAHs in waters from the Danshui River Basin in Yichang, China[J]. International Journal of Environmental Research and Public Health,2021,19(1):263. doi: 10.3390/ijerph19010263 [10] 杨梦茹, 徐雄, 王东红, 等. 长江典型江段水体PAHs的分布特征、来源及其生态风险[J]. 中国环境科学,2022,42(11):5308-5317. doi: 10.3969/j.issn.1000-6923.2022.11.037YANG M R, XU X, WANG D H, et al. Distribution characteristics, source and ecological risks assessment of PAHs in water bodies of typical sections of the Yangtze River[J]. China Environmental Science,2022,42(11):5308-5317. doi: 10.3969/j.issn.1000-6923.2022.11.037 [11] LI W W, ZHANG Z M, ZHANG R R, et al. Spatiotemporal occurrence, sources and risk assessment of polycyclic aromatic hydrocarbons in a typical mariculture ecosystem[J]. Water Research,2021,204:117632. doi: 10.1016/j.watres.2021.117632 [12] 吴喜军, 董颖, 赵健, 等. 陕北矿区典型河流多环芳烃的赋存特征、来源及毒性风险分析[J]. 环境科学,2023,44(4):2040-2051.WU X J, DONG Y, ZHAO J, et al. Occurrence characteristics, sources, and toxicity risk analysis of polycyclic aromatic hydrocarbons in typical rivers of northern Shaanxi mining area, China[J]. Environmental Science,2023,44(4):2040-2051. [13] BAO K S, ZACCONE C, TAO Y Q, et al. Source apportionment of priority PAHs in 11 lake sediment cores from Songnen Plain, Northeast China[J]. Water Research,2020,168:115158. doi: 10.1016/j.watres.2019.115158 [14] WANG C H, WU S H, ZHOU S L, et al. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review[J]. Pedosphere,2017,27(1):17-26. doi: 10.1016/S1002-0160(17)60293-5 [15] 杨延梅, 赵航晨, 孟睿, 等. 嘉兴市城市河网区多环芳烃污染源解析及生态风险评价[J]. 环境科学,2020,41(11):4989-4998.YANG Y M, ZHAO H C, MENG R, et al. Sources and ecological risk assessment of polycyclic aromatic hydrocarbons in the Jiaxing River network[J]. Environmental Science,2020,41(11):4989-4998. [16] PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994,5(2):111-126. doi: 10.1002/env.3170050203 [17] PAATERO P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems,1997,37(1):23-35. doi: 10.1016/S0169-7439(96)00044-5 [18] CAO Z G, LIU J L, LUAN Y, et al. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China[J]. Ecotoxicology,2010,19(5):827-837. doi: 10.1007/s10646-010-0464-5 [19] ZHANG Y F, YIN J, QV Z, et al. Deriving freshwater sediment quality guidelines of polycyclic aromatic hydrocarbons using method of species sensitivity distribution and application for risk assessment[J]. Water Research,2022,225:119139. doi: 10.1016/j.watres.2022.119139 [20] ZHENG B H, WANG L P, LEI K, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River Estuary and the adjacent area, China[J]. Chemosphere,2016,149:91-100. doi: 10.1016/j.chemosphere.2016.01.039 [21] CHEN C F, JU Y R, SU Y C, et al. Distribution, sources, and behavior of PAHs in estuarine water systems exemplified by Salt River, Taiwan[J]. Marine Pollution Bulletin,2020,154:111029. doi: 10.1016/j.marpolbul.2020.111029 [22] 高晓奇, 王学霞, 汪浩, 等. 黄河三角洲丰水期上覆水中PAHs分布、来源及生态风险研究[J]. 生态环境学报,2017,26(5):831-836.GAO X Q, WANG X X, WANG H, et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in overlying water during flood seasons from the Yellow River Delta, China[J]. Ecology and Environmental Sciences,2017,26(5):831-836. [23] LIANG X X, JUNAID M, WANG Z F, et al. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China[J]. Environmental Pollution,2019,250:695-707. doi: 10.1016/j.envpol.2019.04.107 [24] NA M L, ZHAO Y M, SU R N, et al. Residues, potential source and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water of the East Liao River, Jilin Province, China[J]. Science of the Total Environment,2023,886:163977. doi: 10.1016/j.scitotenv.2023.163977 [25] HUANG H F, XING X L, ZHANG Z Z, et al. Polycyclic aromatic hydrocarbons (PAHs) in multimedia environment of Heshan coal district, Guangxi: distribution, source diagnosis and health risk assessment[J]. Environmental Geochemistry and Health,2016,38(5):1169-1181. doi: 10.1007/s10653-015-9781-1 [26] CHEN D, FENG Q Y, LIANG H Q, et al. Distribution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in underground coal mining environment of Xuzhou[J]. Human and Ecological Risk Assessment,2019,25(6):1564-1578. doi: 10.1080/10807039.2018.1489715 [27] 贾天琪, 雷荣荣, 武小琳, 等. 长江下游支流水体中多环芳烃的分布及生态风险评估[J]. 环境科学,2020,41(5):2221-2228.JIA T Q, LEI R R, WU X L, et al. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in tributary waters of the lower reaches of the Yangtze River, China[J]. Environmental Science,2020,41(5):2221-2228. [28] US EPA. National recommended water quality criteria[S/OL]. [2023-12-20]. http://www. epa.gov/ost/pc/revcom.pdf. [29] 马赛炎, 魏海英, 马瑾, 等. 基于BP神经网络预测北京市加油站周边土壤多环芳烃含量[J]. 环境科学,2023,44(4):2215-2222.MA S Y, WEI H Y, MA J, et al. Prediction of PAHs content in soil around gas stations in Beijing based on BP neural network[J]. Environmental Science,2023,44(4):2215-2222. [30] 徐振鹏, 钱雅慧, 洪秀萍, 等. 淮北孙疃矿区地表尘中多环芳烃类化合物的污染特征及致癌风险评价[J]. 环境科学,2023,44(7):3809-3819.XU Z P, QIAN Y H, HONG X P, et al. Contamination characteristics and risk assessment of polycyclic aromatic compounds in surface dust of Suntuan mining area in Huaibei[J]. Environmental Science,2023,44(7):3809-3819. [31] 齐静文, 张瑞芹, 姜楠, 等. 洛阳市秋冬季PM2.5中多环芳烃的污染特征、来源解析及健康风险评价[J]. 环境科学,2021,42(2):595-603.QI J W, ZHANG R Q, JIANG N, et al. Characterization, sources, and health risks of PM2.5-bound PAHs during autumn and winter in Luoyang City[J]. Environmental Science,2021,42(2):595-603. [32] RIAZ R, ALI U, LI J, et al. Assessing the level and sources of polycyclic aromatic hydrocarbons (PAHs) in soil and sediments along Jhelum riverine system of lesser Himalayan Region of Pakistan[J]. Chemosphere,2019,216:640-652. doi: 10.1016/j.chemosphere.2018.10.139 [33] WU J, LI K K, MA D, et al. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soils around a typical coking plant in Shandong, China[J]. Human and Ecological Risk Assessment,2018,24(1):225-241. doi: 10.1080/10807039.2017.1377595 [34] WANG F W, LIN T, FENG J L, et al. Source apportionment of polycyclic aromatic hydrocarbons in PM2.5 using positive matrix factorization modeling in Shanghai, China[J]. Environmental Science Processes & Impacts,2015,17(1):197-205. [35] ZHENG B H, MA Y Q, QIN Y W, et al. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water in industrial affected areas of the Three Gorges Reservoir, China[J]. Environmental Science and Pollution Research,2016,23(23):23485-23495. doi: 10.1007/s11356-016-7524-1 [36] LI R F, HUA P, ZHANG J, et al. Effect of anthropogenic activities on the occurrence of polycyclic aromatic hydrocarbons in aquatic suspended particulate matter: evidence from Rhine and Elbe Rivers[J]. Water Research,2020,179:115901. doi: 10.1016/j.watres.2020.115901 [37] REN C B, ZHANG Q Q, WANG H W, et al. Characteristics and source apportionment of polycyclic aromatic hydrocarbons of groundwater in Hutuo River alluvial-pluvial fan, China, based on PMF model[J]. Environmental Science and Pollution Research International,2021,28(8):9647-9656. doi: 10.1007/s11356-020-11485-6 [38] 何卓识, 李超灿, 张靖天, 等. 受体模型在湖泊沉积物中PAHs、PFASs和OCPs源解析比较[J]. 环境工程技术学报,2018,8(3):231-240. doi: 10.3969/j.issn.1674-991X.2018.03.031HE Z S, LI C C, ZHANG J T, et al. Analysis and comparison of PAHs, PFASs and OCPs sources in lake sediments by receptor model[J]. Journal of Environmental Engineering Technology,2018,8(3):231-240. ⊕ doi: 10.3969/j.issn.1674-991X.2018.03.031