留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花生壳复合水凝胶的制备及其吸附铅、镉性能

杨志林 唐成波 易筱筠 郝鑫瑞 王卓

杨志林,唐成波,易筱筠,等.花生壳复合水凝胶的制备及其吸附铅、镉性能[J].环境工程技术学报,2024,14(5):1560-1571 doi: 10.12153/j.issn.1674-991X.20230916
引用本文: 杨志林,唐成波,易筱筠,等.花生壳复合水凝胶的制备及其吸附铅、镉性能[J].环境工程技术学报,2024,14(5):1560-1571 doi: 10.12153/j.issn.1674-991X.20230916
YANG Z L,TANG C B,YI X Y,et al.Preparation of peanut shell composite hydrogel and its adsorption properties of lead and cadmium[J].Journal of Environmental Engineering Technology,2024,14(5):1560-1571 doi: 10.12153/j.issn.1674-991X.20230916
Citation: YANG Z L,TANG C B,YI X Y,et al.Preparation of peanut shell composite hydrogel and its adsorption properties of lead and cadmium[J].Journal of Environmental Engineering Technology,2024,14(5):1560-1571 doi: 10.12153/j.issn.1674-991X.20230916

花生壳复合水凝胶的制备及其吸附铅、镉性能

doi: 10.12153/j.issn.1674-991X.20230916
基金项目: 国家自然科学基金项目(41931288);广东省重点领域研究开发计划项目(2019B110207001)
详细信息
    作者简介:

    杨志林(1995—),男,工程师,硕士,主要研究方向为水体重金属污染控制、环境功能材料研发、环境污染修复,zhilinyang@yeah.net

    通讯作者:

    易筱筠(1970—),女,教授,主要从事重金属污染水土环境生态修复、矿区土壤重金属形态分布的地球化学机制研究,xyyi@scut.edu.cn

  • 中图分类号: X703

Preparation of peanut shell composite hydrogel and its adsorption properties of lead and cadmium

  • 摘要:

    以花生壳(PS)、丙烯酸(AA)为聚合单体,过硫酸钾(APS)为引发剂,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,β-环糊精(β-CD)作为增强材料,通过自由基聚合反应合成花生壳木质纤维素/β-环糊精/丙烯酸复合水凝胶〔PS(H)/β-CD/PAA)〕;研究了PS(H)/β-CD/PAA的表面性质和微观形貌,考察了在不同环境因子条件下PS(H)/β-CD/PAA对Cd2+、Pb2+的吸附行为和吸附机理。结果表明:PS(H)/β-CD/PAA具有多孔网络结构,加入β-CD后制备的复合水凝胶有更好的机械性能;PS(H)/β-CD/PAA合成成本低,并且可以循环使用;PS(H)/β-CD/PAA对Cd2+、Pb2+可在60 min内达到吸附平衡,最大吸附容量分别为115.67、181.71 mg/g,在pH为3~8的较宽范围有良好的效果;PS(H)/β-CD/PAA对Cd2+、Pb2+的吸附过程主要通过离子交换、络合作用或配位作用来进行;此外,PS(H)/β-CD/PAA在处理实际废水时,对Pb2+、Cd2+、Cu2+、Zn2+的去除率分别达76.4%、88.6%、72.9%、31.6%。PS(H)/β-CD/PAA处理水体重金属效果良好,能够充分利用资源、节约成本,可作为一种重金属废水处理的潜在新材料。

     

  • 图  1  水凝胶的压缩应力-应变曲线

    Figure  1.  Compressive stress-strain curves of hydrogel

    图  2  PS、PS(H)/β-CD/PAA的SEM图谱

    Figure  2.  SEM spectra of peanut shell and PS(H)/β-CD/PAA composite hydrogel

    图  3  β-CD、PS(H)、PS(H)/β-CD/PAA的FT-IR光谱

    Figure  3.  FT-IR spectra of β-CD, PS(H), PS(H)/β-CD/PAA

    图  4  β-CD、PS(H)、PS(H)/β-CD/PAA的XRD 图谱

    Figure  4.  XRD patterns of β-CD, PS(H), PS(H)/β-CD/PAA

    图  5  溶液pH对PS(H)/β-CD/PAA去除Cd2+、Pb2+效果的影响

    Figure  5.  Effect of solution pH on Cd2+ and Pb2+ adsorption by PS(H)/β-CD/PAA composite hydrogel

    图  6  Cd2+、Pb2+初始浓度对Cd2+、Pb2+去除效果的影响

    Figure  6.  Initial mass concentration of Cd2+ and Pb2+ on the effect of removing Cd2+ and Pb2+

    图  7  PS(H)/β-CD/PAA投加量对Cd2+、Pb2+去除效果的影响

    Figure  7.  Effect of PS(H)/β-CD/PAA composite hydrogel dosage on the removal of Cd2+ and Pb2+

    图  8  PS(H)/β-CD/PAA对Pb2+、Cu2+、Cd2+和Ni2+的选择性吸附

    Figure  8.  Selective adsorption of Pb2+, Cu2+, Cd2+ and Ni2+ by PS(H)/β-CD/PAA composite hydrogel

    图  9  PS(H)/β-CD/PAA的吸附动力学曲线

    Figure  9.  Adsorption kinetic curves of PS(H)/β-CD/PAA

    图  10  PS(H)/β-CD/PAA吸附Cd2+、Pb2+的颗粒内扩散模型

    Figure  10.  Intra-particle diffusion model of adsorbed Cd2+ and Pb2+ by PS(H)/β-CD/PAA

    图  11  Cd2+和Pb2+在PS(H)/β-CD/ PAA上的吸附等温线拟合结果

    Figure  11.  Sorption isotherm fitting results of Cd2+ and Pb2+ on PS(H)/β-CD/PAA hydrogel

    图  12  PS(H)/β-CD/PAA吸附Cd2+、Pb2+前后的ATR-FTIR光谱图与XPS光谱图

    Figure  12.  ATR-FTIR spectra and XPS spectra of PS(H)/β-CD/PAA composite hydrogel before and after adsorption of Cd2+ and Pb2+

    图  13  循环次数对PS(H) /β-CD/ PAA去除Cd2+和Pb2+效果的影响

    Figure  13.  Effect of recycling number on the removal efficiency of Pb2+ and Cd2+ by PS(H)/β-CD/PAA hydrogel

    表  1  PS(H)/β-CD/PAA对Cd2+、Pb2+的吸附动力学模型拟合参数

    Table  1.   Fitting parameters of adsorption kinetic model of PS(H)/β-CD/PAA for Cd2+ and Pb2+

    金属离子Qe,exp/(mg/g)准一级反应动力学准二级反应动力学
    k1/(L/min)Qe,cal /(mg/g)R2k2/〔g/(mg·min)〕Qe,cal/(mg/g)R2
    Pb2+159.900.163 7154.920.990 30.001 3164.730.997 1
    Cd2+98.500.070 094.460.957 30.000 9103.530.990 7
    下载: 导出CSV

    表  2  不同温度下Langmuir和Freundlich等温模型的拟合参数

    Table  2.   Parameters of Langmuir and Freundlich isotherm models at different temperatures

    方程 Cd2+溶液温度/K Pb2+溶液温度/K
    293 303 313 293 303 313
    Langmuir Qm 108.45 114.30 115.67 160.42 168.52 181.71
    KL 13.60 10.84 1.06 1.47 1.52 1.21
    R2 0.972 0.967 0.973 0.982 0.982 0.963
    Freundlich KF 81.23 84.83 72.01 120.81 124.99 121.55
    n 0.076 0.078 0.117 0.076 0.082 0.119
    R2 0.969 0.962 0.939 0.886 0.864 0.954
    下载: 导出CSV

    表  3  金属离子吸附的热力学参数值

    Table  3.   Values of thermodynamic parameters for metal ion sorption

    金属离子 溶液温度/K ΔG0/(kJ/mol) ΔS0/〔J/(mol·K)〕 ΔH0/(kJ/mol)
    Cd2+ 293 −1.78 2.44 12
    303 −1.9
    313 −2.02
    Pb2+ 293 −3.11 2.44 19.0
    303 −3.35
    313 −3.49
    下载: 导出CSV

    表  4  不同吸附剂的吸附效果及成本比较

    Table  4.   Comparison of adsorption effect and cost of different adsorbents

    吸附剂 Qe/(mg/g) 成本/(元/t)
    纳米二氧化钛[35] 15.3(Cd2+ 66 500
    钙蒙脱石[36] 30.7(Cd2+ 120 000
    活性炭[37] 33.6(Cd2+ 15 000
    交联壳聚糖[38] 79.2(Pb2+ 1 600 000
    麸皮[39] 87.0(Pb2+ 3 600
    氧化石墨烯[40] 106.3(Cd2+ 1 189 000 000
    PS(H)/β-CD/PAA 115.67(Cd2+)、181.71(Pb2+ 2 905
      注:(Cd2+)、(Pb2+)表示吸附剂对Cd2+、Pb2+的吸附。
    下载: 导出CSV

    表  5  不同PS(H)/β-CD/PAA投加量时AMD废水中各离子的去除率

    Table  5.   Removal rates of different ions in AMD wastewater at different dosages of PS(H)/β-CD/PAA % 

    吸附剂投加量/(g/L) Cd2+ Pb2+ Cu2+ Ni2+ Zn2+ 总Fe ${\mathrm{SO}}_4^{2-} $ Cl-
    1 23.3 69.5 67.2 8.4 11.1 100 1.9 0.6
    2 45.8 73.2 76.0 12.1 21.7 100 2.1 2.2
    3 60.2 73.7 83.9 15.4 25.2 100 9.6 3.3
    4 72.9 76.4 88.6 21.7 31.6 100 4.6 6.6
    下载: 导出CSV
  • [1] GUO B, DENG F, ZHAO Y, et al. Magnetic ion-imprinted and–SH functionalized polymer for selective removal of Pb(Ⅱ) from aqueous samples[J]. Applied Surface Science,2014,292:438-446. doi: 10.1016/j.apsusc.2013.11.156
    [2] ABOOBAKRI E, JAHANI M. Graphene oxide/Fe3O4/polyaniline nanocomposite as an efficient adsorbent for the extraction and preconcentration of ultra-trace levels of cadmium in rice and tea samples[J]. Research on Chemical Intermediates,2020,46(12):5181-5198. doi: 10.1007/s11164-020-04256-y
    [3] JIN L Y, ZHANG G M, TIAN H F. Current state of sewage treatment in China[J]. Water Research,2014,66:85-98. doi: 10.1016/j.watres.2014.08.014
    [4] JING G H, WANG L, YU H J, et al. Recent progress on study of hybrid hydrogels for water treatment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,416:86-94.
    [5] ULLAH F, OTHMAN M B H, JAVED F, et al. Classification, processing and application of hydrogels: a review[J]. Materials Science & Engineering C, Materials for Biological Applications, 2015, 57: 414-433.
    [6] MA J H, LI T, LIU Y T, et al. Rice husk derived double network hydrogel as efficient adsorbent for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) removal in individual and multicomponent systems[J]. Bioresource Technology,2019,290:121793. doi: 10.1016/j.biortech.2019.121793
    [7] GANGULY P, SENGUPTA S, DAS P, et al. Valorization of food waste: extraction of cellulose, lignin and their application in energy use and water treatment[J]. Fuel,2020,280:118581. doi: 10.1016/j.fuel.2020.118581
    [8] 聂发辉, 刘荣荣, 周永希, 等. 利用木质纤维素废弃物吸附重金属离子的研究进展[J]. 水处理技术,2016,42(1):12-19.

    NIE F H, LIU R R, ZHOU Y X, et al. Research advances of lignocellulosic wastes of the adsorption of metal ions in wastewater[J]. Technology of Water Treatment,2016,42(1):12-19.
    [9] 张强, 朱春山, 李留景. β-环糊精/丙烯酰胺水凝胶的合成与表征[J]. 辽宁化工,2009,38(7):437-441.

    ZHANG Q, ZHU C S, LI L J. Synthesis and characterization of acrylamide hydrogel/β-cyclodextrin copolymer[J]. Liaoning Chemical Industry,2009,38(7):437-441.
    [10] 沈海民, 纪红兵, 武宏科, 等. β-环糊精的固载及其应用最新研究进展[J]. 有机化学,2014,34(8):1549-1572. doi: 10.6023/cjoc201402024

    SHEN H M, JI H B, WU H K, et al. Recent advances in the immobilization of β-cyclodextrin and their application[J]. Chinese Journal of Organic Chemistry,2014,34(8):1549-1572. doi: 10.6023/cjoc201402024
    [11] 王志芳, 宣承楷, 刘雪敏, 等. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报,2018,32(19):3456-3464.

    WANG Z F, XUAN C K, LIU X M, et al. Advances in hydrogel materials based on cyclodextrin derivatives[J]. Materials Review,2018,32(19):3456-3464.
    [12] MORIN-CRINI N, CRINI G. Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers[J]. Progress in Polymer Science,2013,38(2):344-368. doi: 10.1016/j.progpolymsci.2012.06.005
    [13] ZHOU G Y, LUO J M, LIU C B, et al. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents[J]. Water Research,2018,131:246-254. doi: 10.1016/j.watres.2017.12.067
    [14] KUNDU D, MONDAL S K, BANERJEE T. Development of β-cyclodextrin-cellulose/hemicellulose-based hydrogels for the removal of Cd(Ⅱ) and Ni(Ⅱ): synthesis, kinetics, and adsorption aspects[J]. Journal of Chemical & Engineering Data,2019,64(6):2601-2617.
    [15] KAWANO S, KOBAYASHI D, TAGUCHI S, et al. Construction of continuous porous organogels, hydrogels, and bicontinuous organo/hydro hybrid gels from bicontinuous microemulsions[J]. Macromolecules,2010,43(1):473-479. doi: 10.1021/ma901624p
    [16] LIU R Q, LIANG S M, TANG X Z, et al. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels[J]. Journal of Materials Chemistry,2012,22(28):14160-14167. doi: 10.1039/c2jm32541a
    [17] MA J H, ZHOU G Y, CHU L, et al. Efficient removal of heavy metal ions with an EDTA functionalized chitosan/polyacrylamide double network hydrogel[J]. ACS Sustainable Chemistry & Engineering,2017,5(1):843-851.
    [18] QI X H, JIA X Q, YANG Y, et al. Formation and recovery of Co2+, Ni2+, Cu2+ macromolecular complexes with polystyrene and acrylic acid[J]. Hydrometallurgy,2009,96(4):269-274. doi: 10.1016/j.hydromet.2008.11.001
    [19] ZHANG D, PAN X L, WANG S, et al. Multifunctional poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer as an oral high-performance delivery carrier of tacrolimus[J]. Molecular Pharmaceutics,2015,12(7):2337-2351. doi: 10.1021/acs.molpharmaceut.5b00010
    [20] 王皓, 刘淼. 环糊精/顺丁烯二酸-丙烯酸复合凝胶对碱性藏花红染料的吸附[J]. 科学技术与工程,2019,19(2):256-261.

    WANG H, LIU M. Adsorption of safranine-t dye by β-cyclodextrin/maleic acid-acrylic acid composite hydrogel[J]. Science Technology and Engineering,2019,19(2):256-261.
    [21] ZHOU G Y, LUO J M, LIU C B, et al. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent[J]. Water Research,2016,89:151-160. doi: 10.1016/j.watres.2015.11.053
    [22] HADI P, BARFORD J, McKAY G. Toxic heavy metal capture using a novel electronic waste-based material-mechanism, modeling and comparison[J]. Environmental Science & Technology,2013,47(15):8248-8255.
    [23] YANG G X, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research,2014,48:396-405. doi: 10.1016/j.watres.2013.09.050
    [24] GE Y Y, CUI X M, LIAO C L, et al. Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(Ⅱ) in water: batch and column studies[J]. Chemical Engineering Journal,2017,311:126-134. doi: 10.1016/j.cej.2016.11.079
    [25] 杨毅, 高敏轩, 陈元, 等. 电厂粉煤灰、炉渣和污泥复合陶粒对低浓度Pb2+的吸附特性[J]. 环境科学研究,2024,37(2):407-414.

    YANG Y, GAO M X, CHEN Y, et al. Adsorption characteristics of power plant fly ash, slag and sludge composite ceramics for low concentration Pb2+[J]. Research of Environmental Sciences,2024,37(2):407-414.
    [26] LIN H, HAN S K, DONG Y B, et al. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(Ⅵ)[J]. Applied Surface Science,2017,412:152-159. doi: 10.1016/j.apsusc.2017.03.061
    [27] ZHOU G, LIU C, TANG Y, et al. Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater[J]. Chemical Engineering Journal,2015,280:275-282. doi: 10.1016/j.cej.2015.06.041
    [28] XIE F Z, WU F C, LIU G J, et al. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite[J]. Environmental Science & Technology,2014,48(1):582-590.
    [29] WANG J J, LI Z K. Enhanced selective removal of Cu(Ⅱ) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: behaviors and mechanisms[J]. Journal of Hazardous Materials,2015,300:18-28. doi: 10.1016/j.jhazmat.2015.06.043
    [30] WU N M, LI Z K. Synthesis and characterization of poly (HEA/MALA) hydrogel and its application in removal of heavy metal ions from water[J]. Chemical Engineering Journal,2013,215/216:894-902. doi: 10.1016/j.cej.2012.11.084
    [31] DENG S B, BAI, CHEN J P. Aminated polyacrylonitrile fibers for lead and copper removal[J]. Langmuir,2003,19(12):5058-5064. doi: 10.1021/la034061x
    [32] PENG L, XU Y, ZHOU F, et al. Enhanced removal of Cd(Ⅱ) by poly (acrylamide-co-sodium acrylate) water-retaining agent incorporated nano hydrous manganese oxide[J]. Materials & Design,2016,96:195-202.
    [33] ZHOU N, CHEN H G, XI J T, et al. Biochars with excellent Pb(Ⅱ) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization[J]. Bioresource Technology,2017,232:204-210. doi: 10.1016/j.biortech.2017.01.074
    [34] 张羽嘉, 王兴润, 王雷, 等. 改性海藻酸钠凝胶材料的制备及其除铬性能[J]. 环境工程技术学报,2023,13(6):2135-2142.

    ZHANG Y J, WANG X R, WANG L, et al. Preparation of modified sodium alginate gel material and its chromium removal performance[J]. Journal of Environmental Engineering Technology,2023,13(6):2135-2142.
    [35] LIANG P, SHI T Q, LI J. Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample[J]. International Journal of Environmental Analytical Chemistry,2004,84(4):315-321. doi: 10.1080/03067310310001640456
    [36] LI Y, WANG J D, WANG X J, et al. Adsorption-desorption of Cd(Ⅱ) and Pb(Ⅱ) on Ca-montmorillonite[J]. Industrial & Engineering Chemistry Research,2012,51(18):6520-6528.
    [37] KOBYA M, DEMIRBAS E, SENTURK E, et al. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone[J]. Bioresource Technology,2005,96(13):1518-1521. doi: 10.1016/j.biortech.2004.12.005
    [38] LU Y C, HE J, LUO G S. An improved synthesis of chitosan bead for Pb(Ⅱ) adsorption[J]. Chemical Engineering Journal,2013,226:271-278. doi: 10.1016/j.cej.2013.04.078
    [39] BULUT Y, BAYSAL Z. Removal of Pb(Ⅱ) from wastewater using wheat bran[J]. Journal of Environmental Management,2006,78(2):107-113.
    [40] ZHAO G X, LI J X, REN X M, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology,2011,45(24):10454-10462.
    [41] 张杰, 龙琦, 李彦成, 等. 酸性矿山废水与选矿废水协同生化处理研究[J]. 水处理技术,2020,46(7):94-98.

    ZHANG J, LONG Q, LI Y C, et al. The co-treatment of acid mine drainage and mineral processing wastewater by biological remediation[J]. Technology of Water Treatment,2020,46(7):94-98. ◇
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-23
  • 录用日期:  2024-07-25
  • 修回日期:  2024-07-19
  • 网络出版日期:  2024-09-30

目录

    /

    返回文章
    返回