留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江上游典型丘陵山区坡耕地径流及氮磷碳流失特征

王祥 陈炜 黄国鲜 童思陈 徐向舟 聂玉玺 宋永会

王祥,陈炜,黄国鲜,等.长江上游典型丘陵山区坡耕地径流及氮磷碳流失特征[J].环境工程技术学报,2024,14(5):1589-1598 doi: 10.12153/j.issn.1674-991X.20230920
引用本文: 王祥,陈炜,黄国鲜,等.长江上游典型丘陵山区坡耕地径流及氮磷碳流失特征[J].环境工程技术学报,2024,14(5):1589-1598 doi: 10.12153/j.issn.1674-991X.20230920
WANG X,CHEN W,HUANG G X,et al.Characteristics of runoff and nitrogen, phosphorus, and carbon loss in sloping cultivated lands in the typical hilly mountainous region of the Upper Yangtze River Basin[J].Journal of Environmental Engineering Technology,2024,14(5):1589-1598 doi: 10.12153/j.issn.1674-991X.20230920
Citation: WANG X,CHEN W,HUANG G X,et al.Characteristics of runoff and nitrogen, phosphorus, and carbon loss in sloping cultivated lands in the typical hilly mountainous region of the Upper Yangtze River Basin[J].Journal of Environmental Engineering Technology,2024,14(5):1589-1598 doi: 10.12153/j.issn.1674-991X.20230920

长江上游典型丘陵山区坡耕地径流及氮磷碳流失特征

doi: 10.12153/j.issn.1674-991X.20230920
基金项目: 国家重点研发计划项目(2021YFC3201502);国家自然科学基金项目(52079130,U2240202);重庆市教育委员会科学技术研究项目(KJQN202301354);重庆文理学院塔尖计划项目(P2021HH04);重庆市永川区自然科学基金项目(2022yc-jckx20013)
详细信息
    作者简介:

    王祥(1998—),男,硕士研究生,主要研究方向为生态水利,784917737@qq.com

    通讯作者:

    陈炜(1987—),男,副教授,主要研究方向为流域水污染控制与治理,envwchen@163.com

    黄国鲜(1975—),男,研究员,主要从事水生态环境模拟研究,huanggx@craes.org.cn

  • 中图分类号: X52

Characteristics of runoff and nitrogen, phosphorus, and carbon loss in sloping cultivated lands in the typical hilly mountainous region of the Upper Yangtze River Basin

  • 摘要:

    持续的坡面降雨可能引发地表径流和壤中流的形成。其中,地表径流可通过溶蚀、侵蚀、运输等方式将大量富集在表土(通常为0~20 mm厚度)的养分从土壤中转移到受纳环境。降雨强度和坡度的变化可以影响坡面径流强度,从而改变径流中总氮(TN)、总磷(TP)、溶解性有机碳(DOC)等养分浓度与通量过程。通过模拟降雨试验,设置3种典型降雨强度(40、60、90 mm/h)和坡度(6°、12°、18°),探讨不同条件下丘陵山区紫色土坡面径流及坡面TN、TP、DOC流失特征。结果表明:1)产流临界坡度不是一个定值,降雨强度在60 mm/h及以下时,临界坡度介于6°~18°;降雨强度达到90 mm/h时,未出现明显的临界坡度。2)相同降雨强度下,径流中TN和DOC浓度与坡度呈正相关(18°>12°>6°);降雨强度为90 mm/h时,径流中TP浓度与坡度的关系为6°>12°>18°,其余降雨强度下,则为12°>18°>6°。除12°坡面外,DOC流失量随降雨强度增加呈上升趋势;TP最大流失量出现在90 mm/h降雨强度下的6°坡面,为0.91 mg/m2,表现为来源限制,其余坡度坡面的TP流失表现为携带限制。3)坡面产流量和产沙量主要受降雨强度的影响,产流量和降雨强度与径流中TP流失量和DOC流失量显著相关,坡度与碳、氮、磷流失量的相关性均不显著,径流中TN流失量与TP和DOC流失量显著相关。研究显示,高强度降雨和小坡度组合下,径流量、TP流失量、DOC流失量显著高于其余降雨强度和坡度的组合,而在高强度降雨和大坡度组合下,TN流失量达到峰值。因此,需要特别关注强降雨、小坡度下紫色土中TP、DOC流失及强降雨、大坡度下TN流失问题。

     

  • 图  1  模拟降雨试验装置

    注:图中尺寸均为mm。

    Figure  1.  Layout of the simulated rainfall test

    图  2  不同降雨和坡度条件下坡面产流产沙变化特征

    Figure  2.  Varying characteristics of runoff and sediment production on slope surfaces under diverse rainfall intensities and slope gradients

    图  3  不同降雨强度和坡度下紫色土坡面碳、氮、磷流失浓度随产流历时的变化过程

    Figure  3.  Changes of carbon, nitrogen and phosphorus loss concentration of purple soil slope with runoff duration under different rainfall intensities and slopes

    图  4  不同降雨强度和坡度下TN、TP、DOC流失量和产流量变化趋势

    Figure  4.  Trends of TN, TP, DOC loss amount and runoff yield under different rainfall intensities and slopes

    表  1  供试土壤基本理化性质

    Table  1.   Basic physical and chemical properties of experimental soil

    土壤类型 颗粒组成占比/% 容重/(g/cm3 TOC浓度/(g/kg) TN浓度/(g/kg) TP浓度/(g/kg)
    黏粒
    (<0.002 mm)
    粉粒
    (0.002~0.05 mm)
    砂粒
    (0.05~2 mm)
    紫色土 1.31 28.50 70.19 1.25 3.75 0.69 0.21
    下载: 导出CSV

    表  2  碳、氮、磷流失量与影响因素相关性分析

    Table  2.   Correlation analysis of carbon, nitrogen and phosphorus loss and influencing factors

    项目 TN流失量 TP流失量 DOC流失量 坡度 降雨强度 径流量 产沙量
    TN流失量 1
    TP流失量 0.717* 1
    DOC流失量 0.700* 0.630 1
    坡度 0.369 0.053 −0.053 1
    降雨强度 0.632 0.738* 0.783* 0 1
    径流量 0.650 0.967** 0.633 0 0.843** 1
    产沙量 0.767* 0.800** 0.667 0.422 0.843** 0.833** 1
      注:*表示在0.05水平上显著相关;**表示在0.01水平上显著相关。
    下载: 导出CSV
  • [1] DOULABIAN S, SHADMEHRI TOOSI A, HUMBERTO CALBIMONTE G, et al. Projected climate change impacts on soil erosion over Iran[J]. Journal of Hydrology,2021,598:126432. doi: 10.1016/j.jhydrol.2021.126432
    [2] KERVROËDAN L, ARMAND R, REY F, et al. Trait-based sediment retention and runoff control by herbaceous vegetation in agricultural catchments: a review[J]. Land Degradation & Development,2021,32(3):1077-1089.
    [3] 黄国鲜, 聂玉玺, 张清寰, 等. 流域农业面源污染迁移过程与模型研究进展[J]. 环境工程技术学报,2023,13(4):1364-1372. doi: 10.12153/j.issn.1674-991X.20220981

    HUANG G X, NIE Y X, ZHANG Q H, et al. Research progress of agricultural non-point source pollution migration process and model in basins[J]. Journal of Environmental Engineering Technology,2023,13(4):1364-1372. doi: 10.12153/j.issn.1674-991X.20220981
    [4] McCORKLE E P, BERHE A A, HUNSAKER C T, et al. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes[J]. Chemical Geology,2016,445:172-184. doi: 10.1016/j.chemgeo.2016.04.025
    [5] CASSIDY R, DOODY D G, WATSON C J. Impact of legacy soil phosphorus on losses in drainage and overland flow from grazed grassland soils[J]. Science of the Total Environment,2017,575:474-484. doi: 10.1016/j.scitotenv.2016.07.063
    [6] KLEINMAN P J A, SHARPLEY A N, McDOWELL R W, et al. Managing agricultural phosphorus for water quality protection: principles for progress[J]. Plant and Soil,2011,349(1):169-182.
    [7] FAN Y, CLARK M, LAWRENCE D M, et al. Hillslope hydrology in global change research and earth system modeling[J]. Water Resources Research,2019,55(2):1737-1772. doi: 10.1029/2018WR023903
    [8] 刘金涛, 韩小乐, 刘建立, 等. 山坡表层关键带结构与水文连通性研究进展[J]. 水科学进展,2019,30(1):112-122.

    LIU J T, HAN X L, LIU J L, et al. Understanding of critical zone structures and hydrological connectivity: a review[J]. Advances in Water Science,2019,30(1):112-122.
    [9] 贺缠生, 田杰, 张宝庆, 等. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展,2021,36(2):113-124.

    HE C S, TIAN J, ZHANG B Q, et al. A review of advances in impacts of soil hydraulic properties on hydrological processes, challenges and opportunities[J]. Advances in Earth Science,2021,36(2):113-124.
    [10] 李婷婷, 韦彩会, 董文斌, 等. 生草栽培与坡度对桂东北坡地果园地表径流氮磷流失的影响[J]. 水土保持研究,2021,28(3):59-64.

    LI T T, WEI C H, DONG W B, et al. Effects of sod culture and slope on losses of nitrogen and phosphorus in the surface runoff of orchards of northeast Guangxi[J]. Research of Soil and Water Conservation,2021,28(3):59-64.
    [11] 肖胜生, 汤崇军, 王凌云, 等. 自然降雨条件下红壤坡面有机碳的选择性迁移[J]. 土壤学报,2017,54(4):874-884. doi: 10.11766/trxb201610130419

    XIAO S S, TANG C J, WANG L Y, et al. Soil erosion-induced selective transfer of organic carbon in red soil slope field under natural rainfall[J]. Acta Pedologica Sinica,2017,54(4):874-884. doi: 10.11766/trxb201610130419
    [12] 余小芳, 肖胜生, 徐铭泽, 等. 红壤坡耕地地表径流和壤中流中可溶性有机碳的迁移特征[J]. 水土保持研究,2020,27(4):16-22.

    YU X F, XIAO S S, XU M Z, et al. Characteristics of migration of dissolved organic carbon in overland flow and interflow in red soil sloping field[J]. Research of Soil and Water Conservation,2020,27(4):16-22.
    [13] 彭旭东, 戴全厚, 李昌兰, 等. 模拟雨强和地下裂隙对喀斯特地区坡耕地养分流失的影响[J]. 农业工程学报,2017,33(2):131-140.

    PENG X D, DAI Q H, LI C L, et al. Effect of simulated rainfall intensities and underground pore fissure degrees on soil nutrient loss from slope farmlands in Karst Region[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(2):131-140.
    [14] XIA L Z, HOERMANN G, MA L, et al. Reducing nitrogen and phosphorus losses from arable slope land with contour hedgerows and perennial alfalfa mulching in Three Gorges Area, China[J]. Catena,2013,110:86-94. doi: 10.1016/j.catena.2013.05.009
    [15] 严长安, 杜展鹏, 姚波, 等. 滇池宝象河流域氮磷流失空间格局解析[J]. 环境科学研究,2020,33(12):2695-2704.

    YAN C A, DU Z P, YAO B, et al. Spatial pattern analysis of nitrogen and phosphorus losses in Baoxiang River watershed of Dianchi Lake[J]. Research of Environmental Sciences,2020,33(12):2695-2704.
    [16] 彭梦玲, 吴磊, 乔闪闪. 不同雨强下黄土裸坡水-沙-氮磷流失耦合模拟[J]. 中国环境科学,2018,38(3):1109-1116.

    PENG M L, WU L, QIAO S S. Coupling simulation of runoff-sediment-nutrient loss on loess bare sloping land under different rainfall intensities[J]. China Environmental Science,2018,38(3):1109-1116.
    [17] MA T H, LI C J, LU Z M, et al. Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China[J]. Geomorphology,2015,245:193-206. doi: 10.1016/j.geomorph.2015.05.016
    [18] 李越, 薛浩, 孟凡生, 等. 伊逊河春汛期水质波动原因解析[J]. 环境工程技术学报,2022,12(6):2011-2019.

    LI Y, XUE H, MENG F S, et al. Cause analysis of water quality fluctuation of Yixun River in spring flood season[J]. Journal of Environmental Engineering Technology,2022,12(6):2011-2019.
    [19] 郑子成, 秦凤, 李廷轩. 不同坡度下紫色土地表微地形变化及其对土壤侵蚀的影响[J]. 农业工程学报,2015,31(8):168-175.

    ZHENG Z C, QIN F, LI T X. Changes in soil surface microrelief of purple soil under different slope gradients and its effects on soil erosion[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(8):168-175.
    [20] 苟俊菲, 甘凤玲, 刘春红. 紫色土坡面细沟形态变化及其对产流产沙的影响[J]. 水土保持研究,2023,30(5):61-68.

    GOU J F, GAN F L, LIU C H. Variation of rill morphology and its effect on runoff and sediment yield on purple soil slope[J]. Research of Soil and Water Conservation,2023,30(5):61-68.
    [21] 廖思远, 秦延文, 刘志超, 等. 邛海流域设施葡萄园土壤养分与地下水污染特征研究[J]. 环境工程技术学报,2022,12(2):597-606.

    LIAO S Y, QIN Y W, LIU Z C, et al. Characteristics of soil nutrients and groundwater pollution of greenhouse vineyards in Qionghai Lake Basin[J]. Journal of Environmental Engineering Technology,2022,12(2):597-606.
    [22] 沈姣, 王小国, 马晗. 施肥对紫色土农田土壤有机碳损失过程的影响[J]. 中国生态农业学报(中英文),2021,29(9):1571-1581.

    SHEN J, WANG X G, MA H. Effect of fertilizer application on soil carbon loss in purple soil[J]. Chinese Journal of Eco-Agriculture,2021,29(9):1571-1581.
    [23] 闫建梅, 何丙辉, 田太强. 不同施肥与耕作对紫色土坡耕地土壤侵蚀及氮素流失的影响[J]. 中国农业科学,2014,47(20):4027-4035.

    YAN J M, HE B H, TIAN T Q. Effect of fertilizer levels and tillage methods on soil erosion and nutrient loss in purple soil area[J]. Scientia Agricultura Sinica,2014,47(20):4027-4035.
    [24] 成玉婷, 李鹏, 徐国策, 等. 冻融条件下土壤可蚀性对坡面氮磷流失的影响[J]. 农业工程学报,2017,33(24):141-149.

    CHENG Y T, LI P, XU G C, et al. Effect of soil erodibility on nitrogen and phosphorus loss under condition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(24):141-149.
    [25] 王辉, 王全九, 邵明安. 人工降雨条件下黄土坡面养分随径流迁移试验[J]. 农业工程学报,2006,22(6):39-44.

    WANG H, WANG Q J, SHAO M A. Laboratory experiments of soil nutrient transfer in the loess slope with surface runoff during simulated rainfall[J]. Transactions of the Chinese Society of Agricultural Engineering,2006,22(6):39-44.
    [26] CAO L X, LIANG Y, WANG Y, et al. Runoff and soil loss from Pinus massoniana forest in Southern China after simulated rainfall[J]. CATENA,2015,129:1-8. doi: 10.1016/j.catena.2015.02.009
    [27] PAN C Z, SHANGGUAN Z P. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions[J]. Journal of Hydrology,2006,331(1/2):178-185.
    [28] 路培. 土壤结皮形成机制及空间分布对侵蚀的影响研究[D]. 杨凌: 西北农林科技大学, 2018.
    [29] 李兴华. 黄土高陡边坡降雨侵蚀径流运动过程及输沙规律研究[D]. 杨凌: 西北农林科技大学, 2021.
    [30] 王月玲, 蒋齐, 蔡进军, 等. 半干旱黄土丘陵区土壤水分入渗速率的空间变异性[J]. 水土保持通报,2008,28(4):52-55.

    WANG Y L, JIANG Q, CAI J J, et al. Spatial variability of infiltration rate in the semiarid loess hilly and gully area[J]. Bulletin of Soil and Water Conservation,2008,28(4):52-55.
    [31] KHAN M N, GONG Y B, HU T X, et al. Effect of slope, rainfall intensity and mulch on erosion and infiltration under simulated rain on purple soil of south-western Sichuan Province, China[J]. Water,2016,8(11):528. doi: 10.3390/w8110528
    [32] XU P, FU B. The runoff characteristics under simulated rainfall on purple soil sloping cropland[J]. Chinese Journal of Geochemistry,2011,30(3):317-322. doi: 10.1007/s11631-011-0515-5
    [33] 乔闪闪, 吴磊, 彭梦玲. 人工模拟降雨条件下黄土坡面水-沙-氮磷流失特征[J]. 环境科学研究,2018,31(10):1728-1735.

    QIAO S S, WU L, PENG M L. Simulation of runoff, sediment, nitrogen and phosphorus loss on bare loess sloping land using simulated rainfall[J]. Research of Environmental Sciences,2018,31(10):1728-1735.
    [34] LIU D D, SHE D L, YU S E, et al. Rainfall intensity and slope gradient effects on sediment losses and splash from a saline-sodic soil under coastal reclamation[J]. Catena,2015,128:54-62. doi: 10.1016/j.catena.2015.01.022
    [35] WU L, PENG M L, QIAO S S, et al. Assessing impacts of rainfall intensity and slope on dissolved and adsorbed nitrogen loss under bare loessial soil by simulated rainfalls[J]. CATENA,2018,170:51-63. doi: 10.1016/j.catena.2018.06.007
    [36] 王建中, 刘凌. 坡面氮、磷流失特征分析及预测[J]. 河海大学学报(自然科学版),2007,35(4):359-363.

    WANG J Z, LIU L. Analysis and prediction of nitrogen and phosphorous losses from slope surface[J]. Journal of Hohai University (Natural Sciences),2007,35(4):359-363.
    [37] XIE M X, ZHANG Z Y, ZHANG P C, et al. Subsurface nitrogen transfer of sloping farmland in purple soil under different precipitation intensities[J]. Fresenius Environmental Bulletin,2017,26(11):6479-6491.
    [38] 王丽, 王力, 王全九. 不同坡度坡耕地土壤氮磷的流失与迁移过程[J]. 水土保持学报,2015,29(2):69-75.

    WANG L, WANG L, WANG Q J. The processes of nitrogen and phosphorus loss and migration in slope cropland under different slopes[J]. Journal of Soil and Water Conservation,2015,29(2):69-75.
    [39] 樊才睿, 张成福, 史小红, 等. 不同放牧制度草地径流中氮流失及模拟研究[J]. 生态环境学报,2020,29(5):951-960.

    FAN C R, ZHANG C F, SHI X H, et al. Nitrogen loss in surface runoff from Hulun Buir steppe in different grazing systems[J]. Ecology and Environmental Sciences,2020,29(5):951-960.
    [40] ZHANG Q W, WANG Z L, WU B, et al. Identifying sediment transport capacity of raindrop-impacted overland flow within transport-limited system of interrill erosion processes on steep loess hillslopes of China[J]. Soil and Tillage Research,2018,184:109-117. doi: 10.1016/j.still.2018.07.007
    [41] 陈曦, 王雪松, 贺京哲, 等. 模拟降雨条件下秦岭北麓土壤磷素流失特征[J]. 水土保持学报,2016,30(2):80-87.

    CHEN X, WANG X S, HE J Z, et al. Experimental study on soil phosphorus loss of northern area of Qinling Mountains under simulated rainfall[J]. Journal of Soil and Water Conservation,2016,30(2):80-87.
    [42] WANG H, ZHANG Q W, LI X, et al. Surface microrelief induced by tillage management alters the pathway and composition of dissolved organic matter exports from soils to runoff during rainfall[J]. Water Research,2023,245:120554. doi: 10.1016/j.watres.2023.120554
    [43] LOURENZI C, CERETTA C, CERINI J, et al. Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources[J]. Environmental Science, Agricultural and Food Sciences, 2014, 38(2): 544-556.

    LOURENZI C, CERETTA C, CERINI J, et al. Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources[J]. Environmental Science, Agricultural and Food Sciences,2014,38(2):544-556.
    [44] 甘贤民, 严友进, 戴全厚, 等. 降雨强度和坡度对喀斯特坡耕地产流和氮磷流失的影响[J/OL]. 环境科学学报. doi: 10.13671/j.hjkxxb.2023.0372.

    GAN X M, YAN Y J, DAI Q H, et al. Impact of rainfall intensity and slope gradient on runoff and nitrogen and phosphorus loss fluxes of sloping farmland in a karst area[J/OL]. Acta Scientiae Circumstantiae. doi: 10.13671/j.hjkxxb.2023.0372.
    [45] 周明华, 朱波, 汪涛, 等. 紫色土坡耕地磷素流失特征及施肥方式的影响[J]. 水利学报,2010,41(11):1374-1381.

    ZHOU M H, ZHU B, WANG T, et al. Phosphorus losses and effects of fertilization on sloping cropland of purple soil[J]. Journal of Hydraulic Engineering,2010,41(11):1374-1381.
    [46] 张雪, 李忠武, 申卫平, 等. 红壤有机碳流失特征及其与泥沙径流流失量的定量关系[J]. 土壤学报,2012,49(3):465-473. doi: 10.11766/trxb201106170217

    ZHANG X, LI Z W, SHEN W P, et al. Characteristics of loss of organic carbon in red soil and their quantitative relationships with sediment and runoff generation[J]. Acta Pedologica Sinica,2012,49(3):465-473. doi: 10.11766/trxb201106170217
    [47] 何淑勤, 宫渊波, 武万华, 等. 不同坡度下玉米生长期紫色土坡面径流及其可溶性有机碳流失特征[J]. 水土保持学报,2019,33(1):91-97.

    HE S Q, GONG Y B, WU W H, et al. Characteristics of runoff and dissolved organic carbon loss in purple soil with different slope gradients during maize growth stages[J]. Journal of Soil and Water Conservation,2019,33(1):91-97. ◇
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  32
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 录用日期:  2024-04-23
  • 修回日期:  2024-03-05

目录

    /

    返回文章
    返回