Research on spatio-temporal distribution characteristics of urban river water quality based on principal component analysis: a case study of Cangzhou City
-
摘要:
客观、综合评价城市河流水质的污染状况对城市河流水污染精准防治具有重要意义。以2022年沧州市13条重要河流的pH、溶解氧(DO)、高锰酸盐指数(CODMn)、化学需氧量(CODCr)、总磷(TP)、氨氮(NH3-N)、氟化物(F−)共7项水质指标数据为基础,采用主成分分析法,提取引起河流水质变化的主导指标,诊断河流污染状况,再运用水质指标权重计算各河流监测断面和不同季节综合得分,分析河流水质时空分布特征。结果表明:1)2022年沧州市13条河流水质整体较好,大部分河流水质为GB 3838―2002《地表水环境质量标准》Ⅲ类,少数河流CODMn、CODCr达到Ⅳ类水质标准;2)使用主成分分析法,可将7个水质指标转化为2个主成分,累计方差贡献率达78.492%,其中与第一主成分显著相关的水质指标CODMn、CODCr、TP和F−主导着研究区域水质变化,且4个水质指标之间呈显著正相关;3)空间分析表明,沧浪渠为13条监测河流中污染程度最高的河流,且沧州市东北区域河流污染程度高于西北区域和中南区域;4)季节分析表明,13条河流不同季节水质污染严重程度表现为夏季>春季>冬季>秋季。研究结果可为沧州市城市河流水污染控制策略的制定提供参考。
Abstract:Comprehensive and objective evaluation of the pollution status of urban river water quality is of great significance to the precise prevention and control of urban river water pollution. Based on the data of 7 water quality indicators of pH, dissolved oxygen (DO), permanganate index (CODMn), chemical oxygen demand (CODCr), total phosphorus (TP), ammonia nitrogen (NH3-N) and fluoride (F−) of 13 important rivers in Cangzhou City in 2022, the principal component analysis (PCA) method was employed to extract the leading indicators causing changes in river water quality and to diagnose the pollution status of the rivers. Subsequently, the weights of water quality indicators were used to calculate the comprehensive scores for each river monitoring section and different seasons and analyze the spatial and temporal distribution characteristics of river water quality. The results showed that : (1) The overall water quality of the 13 rivers in Cangzhou City was relatively good in 2022, with most water bodies meeting the Class Ⅲ water standards of Environmental Quality Standards for Surface Water (GB 3838-2002), while a few rivers reached the Class Ⅳ water standards in terms of CODMn and CODCr indicators. (2) The application of the PCA method allowed the transformation of the 7 water quality indicators into 2 principal components, with a cumulative variance contribution rate of 78.492%. Among them, the water quality indicators, CODMn, CODCr, TP, and F−, were significantly correlated with the first principal component and dominated the water quality changes in the study area. Moreover, these four indicators showed a significant positive correlation between each other. (3) The spatial analysis revealed that Canglang Channel was the most polluted among the 13 monitored rivers, and the river pollution in the northeast of Cangzhou City was worse than that in the northwestern and southern areas. (4) The seasonal analysis indicated that the seasonal variation for water pollution in urban rivers was in the following order: summer>spring>winter>autumn. The analysis results could provide reference for the control strategy of urban river water pollution in Cangzhou City.
-
表 1 相关系数矩阵
Table 1. Correlation coefficient matrix
水质指标 pH DO CODMn CODCr TP NH3-N F− pH 1 DO 0.535 1 CODMn 0.354 0.294 1 CODCr 0.506 0.473 0.908** 1 TP 0.110 0.288 0.761* 0.741** 1 NH3-N −0.018 −0.198 0.458 0.158 0.345 1 F− 0.143 0.180 0.915* 0.709** 0.719* 0.596 1 注:*表示P<0.05,**表示P<0.01。 表 2 旋转之后的主成分载荷矩阵
Table 2. Principal component load matrix after rotation
指标 PC1 PC2 pH 0.438 0.669 DO 0.441 0.737 CODMn 0.969 −0.103 CODCr 0.918 0.226 TP 0.834 −0.149 NH3-N 0.458 −0.666 F− 0.890 −0.333 特征值 3.866 1.629 方差百分比/% 55.226 23.266 累计方差贡献率/% 55.226 78.492 注:黑体数值为因子载荷大于0.7的值。 表 3 2022年沧州市13条河流监测断面水质状况评价综合得分
Table 3. Comprehensive scores of water quality status of 13 river monitoring sections in Cangzhou City in 2022
监测断面 F1 F2 F 排序 杨官庄 2.414 1.784 1.748 1 四埝村桥 1.959 1.368 1.400 2 李家堡桥 2.149 −0.861 0.987 3 何老营 1.385 −0.429 0.665 4 大口河口 1.260 −2.108 0.205 5 伊庄子闸 0.071 −0.233 −0.015 6 永红桥 −0.025 −0.705 −0.178 7 南运河北街 −0.501 −0.105 −0.301 8 阎辛庄 −0.526 −0.129 −0.321 9 小王庄 −1.094 −0.948 −0.384 10 朱庄闸 −0.781 0.088 −0.411 11 小泊头桥 −1.376 0.277 −0.696 12 大浪淀水库 −4.935 0.105 −2.701 13 表 4 13条河流监测断面不同季节水质PCA评价综合得分
Table 4. Comprehensive scores of PCA evaluation of water quality of 13 river monitoring sections in different seasons
季节 F1 F2 F 排序 春季 1.583 −1.121 0.483 2 夏季 2.842 −1.219 0.863 1 秋季 −0.655 0.437 −0.205 4 冬季 −0.712 0.595 −0.199 3 -
[1] LIU J R, DONG H W, TANG X L, et al. Genotoxicity of water from the Songhua River, China, in 1994-1995 and 2002-2003: potential risks for human health[J]. Environmental Pollution,2009,157(2):357-364. doi: 10.1016/j.envpol.2008.10.004 [2] WANG Y, WANG P, BAI Y J, et al. Assessment of surface water quality via multivariate statistical techniques: a case study of the Songhua River Harbin Region, China[J]. Journal of Hydro-Environment Research,2013,7(1):30-40. doi: 10.1016/j.jher.2012.10.003 [3] ZHAI Y Z, XIA X L, YANG G, et al. Trend, seasonality and relationships of aquatic environmental quality indicators and implications: an experience from Songhua River, NE China[J]. Ecological Engineering,2020,145:105706. doi: 10.1016/j.ecoleng.2019.105706 [4] 邓娟. 陕西省不同生态类型区河流水质时空变化及其评价[D]. 北京: 中国科学院大学, 2017. [5] VALAPPIL N K M, VISWANATHAN P M, HAMZA V. Seasonal hydrochemical dynamics of surface water in the Limbang River, Northern Borneo:evaluating for spatial and temporal trends[J]. Arabian Journal of Geosciences,2020,13(19):980. doi: 10.1007/s12517-020-05936-0 [6] BAI X L, SON Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA[J]. Science of the Total Environment,2021,751:141622. doi: 10.1016/j.scitotenv.2020.141622 [7] TANG J F, LI X H, CAO C L, et al. Compositional variety of dissolved organic matter and its correlation with water quality in peri-urban and urban river watersheds[J]. Ecological Indicators,2019,104:459-469. doi: 10.1016/j.ecolind.2019.05.025 [8] 郭彤, 张永祥, 贾瑞涛. 多重水质评价方法在地下水水质评价中的对比研究: 以北京市朝阳区为例[J]. 环境工程技术学报,2022,12(6):2020-2026.GUO T, ZHANG Y X, JIA R T. Comparative study of multiple water quality assessment methods in groundwater quality assessment: taking Chaoyang District of Beijing as an example[J]. Journal of Environmental Engineering Technology,2022,12(6):2020-2026. [9] 张婷, 刘静玲, 王雪梅. 白洋淀水质时空变化及影响因子评价与分析[J]. 环境科学学报,2010,30(2):261-267.ZHANG T, LIU J L, WANG X M. Causal analysis of the spatial-temporal variation of water quality in Baiyangdian Lake[J]. Acta Scientiae Circumstantiae,2010,30(2):261-267. [10] 丁杰萍, 周静, 尚婷婷. 基于主成分分析的Spearman秩相关系数法在渭河干流甘肃段水质分析中的应用[J]. 地下水,2022,44(2):82-85.DING J P, ZHOU J, SHANG T T. Analysis of water quality trend in the main stream of the Weihe River based on principal component analysis[J]. Ground Water,2022,44(2):82-85. [11] 周炼, 安达, 王月, 等. 武烈河流域水质污染特征及污染源解析[J]. 环境工程技术学报,2016,6(6):579-584.ZHOU L, AN D, WANG Y, et al. Water quality pollution characteristics and pollution source analysis of Wulie River Basin[J]. Journal of Environmental Engineering Technology,2016,6(6):579-584. [12] JIANG Y Q, GUI H R, LI C, et al. Evaluation of the difference in water quality between urban and suburban rivers based on self-organizing map[J]. Acta Geophysica,2021,69(5):1855-1864. doi: 10.1007/s11600-021-00631-4 [13] LIU J Z, ZHANG D, TANG Q J, et al. Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods[J]. PLoS One,2021,16(1):e0245525. doi: 10.1371/journal.pone.0245525 [14] 邢洁, 宋男哲, 陈祥伟, 等. 基于主成分分析的松花江流域黑龙江段水质评价[J]. 中国给水排水,2021,37(1):89-94.XING J, SONG N Z, CHEN X W, et al. Water quality assessment of Heilongjiang control section in Songhua River Basin based on principal component analysis[J]. China Water & Wastewater,2021,37(1):89-94. [15] LU J, GU J R, HAN J Y, et al. Evaluation of spatiotemporal patterns and water quality conditions using multivariate statistical analysis in the Yangtze River, China[J]. Water,2023,15(18):3242. doi: 10.3390/w15183242 [16] LIU L, CAO T T, WANG X D, et al. Spatio-temporal variability and water quality assessment of the Mudan River Watershed, Northern China: PCA and WQI[J]. Desalination and Water Treatment,2021,238:38-48. doi: 10.5004/dwt.2021.27758 [17] LKR A, SINGH M R, PURO N. Spatio-temporal influence on river water chemistry of Doyang River, Nagaland, India, using multivariate techniques[J]. International Journal of Environmental Science and Technology,2023,20(1):625-638. doi: 10.1007/s13762-021-03897-9 [18] AVAKUL P, JUTAGATE T. Spatio-temporal variations in water quality of the Chao Phraya River, Thailand, between 1991 and 2008[J]. Journal of Water Resource and Protection,2012,4(9):725-732. doi: 10.4236/jwarp.2012.49082 [19] HUE N H, THANH N H. Assessment of surface water quality by using multivariate statistical analysis techniques: a case study of Nhue River, Vietnam[J]. International Journal of Environmental Science and Development,2020,11(10):488-492. [20] 沧州市生态环境局. 2019年沧州市生态环境质量公报[A/OL]. [2023-10-12]. https://www.cangzhou.gov.cn/cangzhou/c100558/202007/1c7f0f55a7c140b39f5c659cb4372503.shtml. [21] 沧州市生态环境局. 2020年沧州市生态环境状况公报[A/OL]. [2023-10-12]. http://hb.cangzhou.gov.cn/hb/c100446/202107/b9acc7deb194409cb5476e53db972987.shtml. [22] 宋玉, 刘健松, 陈玲, 等. 南运河沧州段水质污染特征分析及防治对策[J]. 环境与可持续发展,2018,43(4):34-37.SONG Y, LIU J S, CHEN L, et al. An analysis of water pollution characteristics and countermeasures of Nan Canal River in Cangzhou[J]. Environment and Sustainable Development,2018,43(4):34-37. [23] 王淑荣. 基于WSAP模型沧州境内宣惠河水质分析[J]. 智能城市,2020,6(10):127-128. [24] 孙玉娟, 田建立, 韩丽君, 等. 2011—2016年河北省主要入海河流水质及污染状况分析[J]. 河北工业科技,2018,35(5):348-353. [25] 马毅妹. 沧州市城市用水健康循环与污水资源化研究[D]. 武汉: 武汉大学, 2004. [26] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [27] 李艳双, 曾珍香, 张闽, 等. 主成分分析法在多指标综合评价方法中的应用[J]. 河北工业大学学报,1999,28(1):94-97. doi: 10.3969/j.issn.1007-2373.1999.01.022LI Y S, ZENG Z X, ZHANG M, et al. Application of primary component analysis in the methods of comprehensive evaluation for many indexes[J]. Journal of Hebei University of Technology,1999,28(1):94-97. doi: 10.3969/j.issn.1007-2373.1999.01.022 [28] 殷雪妍, 严广寒, 汪星, 等. 不同水质评价方法在通江湖泊中的适用性: 以洞庭湖为例[J]. 环境工程技术学报,2023,13(3):1070-1078.YIN X Y, YAN G H, WANG X, et al. Applicability of different water quality evaluation methods in river-connected lakes: a case study of Dongting Lake[J]. Journal of Environmental Engineering Technology,2023,13(3):1070-1078. [29] 李茹霞, 迪丽努尔·阿吉, 赛米热·托合提, 等. 开都河水质时空分布特征研究[J]. 海洋湖沼通报,2023,45(3):116-123.LI R X, DILINUER A J, SAIMIRE T H T, et al. Analysis on the spatial and temporal distribution characteristics ofwater quality in Kaidu River[J]. Transactions of Oceanology and Limnology,2023,45(3):116-123. [30] 李志亮, 仲跻文. 生化需氧量、化学需氧量、高锰酸盐指数三者关系简析[J]. 水利技术监督,2015,23(1):5-6. [31] KAWABE M, KAWABE M. Temporal and spatial characteristics of chemical oxygen demand in Tokyo Bay[J]. Journal of Oceanography,1997,53(1):19-26. doi: 10.1007/BF02700745 [32] 王子为, 钱昶, 张成波, 等. 伊逊河流域总磷污染来源解析[J]. 环境科学研究,2020,33(10):2290-2297.WANG Z W, QIAN C, ZHANG C B, et al. Source apportionment of total phosphorus pollution in Yixun River Basin[J]. Research of Environmental Sciences,2020,33(10):2290-2297. [33] 嵇晓燕, 李波, 杨凯, 等. 中国地表水氟化物时空分布特征初步研究[J]. 地球与环境,2022,50(6):787-796.JI X Y, LI B, YANG K, et al. Spatial and temporal distribution characteristics of fluoride in surface water of China[J]. Earth and Environment,2022,50(6):787-796. [34] 游亮, 崔莉凤, 刘载文, 等. 藻类生长过程中DO、pH与叶绿素相关性分析[J]. 环境科学与技术,2007,30(9):42-44.YOU L, CUI L F, LIU Z W, et al. Correlation analysis of parameters in algal growth[J]. Environmental Science & Technology,2007,30(9):42-44. [35] 关兴中, 刘昭, 姚成慧, 等. 鄱阳湖典型流域水质综合评价及时空变化分析[J]. 人民长江,2023,54(增刊1):29-34.GUAN X Z, LIU Z, YAO C H et al. Water quality evaluation and spatial-temporal variation analysis in typical watershed of Poyang Lake[J]. Yangtze River,2023,54(Suppl 1):29-34. [36] 保宏运, 郭建阳, 杨海全, 等. 羊卓雍错水体pH偏高的成因[J]. 环境科学研究,2021,34(3):567-575.BAO H Y, GUO J Y, YANG H Q, et al. Reasons for high pH value in Yamzhog Yumco, south Tibet[J]. Research of Environmental Sciences,2021,34(3):567-575. [37] 梁喜珍, 李畅游, 李兴, 等. 乌梁素海富营养化水体pH值与其他指标的相关性初探[J]. 中国农村水利水电,2009(12):1-3.LIANG X Z, LI C Y, LI X, et al. The relativity of pH and other indicators in eutrophication body of Wuliangsuhai Lake[J]. China Rural Water and Hydropower,2009(12):1-3. [38] 富天乙, 邹志红, 王晓静. 基于多元统计和水质标识指数的辽阳太子河水质评价研究[J]. 环境科学学报,2014,34(2):473-480.FU T Y, ZOU Z H, WANG X J. Water quality assessment for Taizi River watershed in Liaoyang section based on multivariate statistical analysis and water quality identification index[J]. Acta Scientiae Circumstantiae,2014,34(2):473-480. [39] 何继山. 水质分析中聚类分析和因子分析的应用研究[J]. 地下水,2018,40(3):92-95. [40] 李春光, 哈建强, 朱艳飞, 等. 沧州市水污染状况分析与趋势研究[C]//变化环境下的水资源响应与可持续利用: 中国水利学会水资源专业委员会2009学术年会论文集.大连, 2009. [41] 李桂然. 沧州市地表水污染现状与污染趋势分析[J]. 海河水利,2009(6):33-34.LI G R. Surface water pollution condition and trend analysis in Cangzhou City[J]. Haihe Water Resources,2009(6):33-34. [42] 周万良, 刘长春, 傅强. 沧浪渠复见游鱼[N]. 河北日报, 2007-12-24(7). [43] 沧州市统计局. 沧州统计年鉴[M]. 北京: 中国环境科学出版社, 2019. [44] 王慧. 沧州农村集中供水工程研究[D]. 天津: 河北工业大学, 2014. [45] 杨丽娜, 李正炎, 张学庆. 大辽河近入海河段水体溶解氧分布特征及低氧成因的初步分析[J]. 环境科学,2011,32(1):51-57.YANG L N, LI Z Y, ZHANG X Q. Distribution characteristics of dissolved oxygen and mechanism of hypoxia in the upper estuarine zone of the Daliaohe River[J]. Environmental Science,2011,32(1):51-57. [46] 赵学娇, 郭芸芸, 徐会勇. 河北省农用化肥施用现状及对策分析[J]. 农业与技术, 2022, 42(13): 4-9.ZHAO X J, GUO Y Y, XU H Y[J]. Agriculture and Technology, 2022, 42(13): 4-9. [47] 龚宇, 王璞, 刑开成. 近40年来沧州地区水资源的气候特征[J]. 干旱区研究,2007,24(4):528-531.GONG Y, WANG P, XING K C. Climatic characteristics affecting water resources in Cangzhou Prefecture since recent 40 years[J]. Arid Zone Research,2007,24(4):528-531. [48] 孙丹阳, 李和学, 刘强, 等. 地下水停采后地面沉降区地下水氟的演化规律: 以沧州市为例[J]. 地质科技通报,2023(4):218-227.SUN D Y, LI H X, LIU Q, et al. Evolution of groundwater fluoride in land subsidence areas after groundwater cessation: a case study at Cangzhou[J]. Bulletin of Geological Science and Technology,2023(4):218-227. [49] 陈靓, 吴文卫, 杨明祥, 等. 白洋淀1998—2016年水体污染物时空分布特征分析[J]. 环境科学导刊,2023,42(2):33-39.CHEN L, WU W W, YANG M X, et al. The spatiotemporal distribution of water pollutants from 1998 to 2016 in Baiyangdian Lake[J]. Environmental Science Survey,2023,42(2):33-39. [50] 董立新, 白昊阳. 天津滞缓流型城市河网水质时空分布特征[J]. 水利水电科技进展,2017,37(4):8-13.DONG L X, BAI H Y. Temporal and spatial distribution characteristics of water quality of stagnant river network in Tianjin City, China[J]. Advances in Science and Technology of Water Resources,2017,37(4):8-13. [51] 王君, 陈新, 李末, 等. 大运河(沧州段)浮游植物群落特征与水体营养状况分析[J]. 水产学杂志,2023,36(2):67-78.WANG J, CHEN X, LI M, et al. Characteristics of phytoplankton community and nutritional status in waters in Grand Canal (Cangzhou section)[J]. Chinese Journal of Fisheries,2023,36(2):67-78. ◇