Ecological health assessment and main influencing factors of Lake Taihu Basin based on PSR model
-
摘要:
压力—状态—响应(PSR)模型能反映社会经济状况对湖泊水体生态环境带来的影响。基于PSR模型,构建包含人口密度、流域植被指数、换水周期、浮游植物多样性指数等18项指标的评价指标体系,评价太湖流域生态健康状况。选取1999年、2007年作为历史对照年份,将2011—2020年流域健康状况与对照年份进行比较,分析太湖流域生态健康状况变化。结果显示:1)所构建的指标体系状态层、压力层、响应层权重分别为0.418、0.291、0.291,对太湖流域生态健康产生较大影响的指标主要为大型水生植被覆盖度、湖泊总磷达标率、环保投资占GDP比例、湖泊综合营养状态指数(TSI)、水资源利用开发率及浮游植物多样性指数,其总贡献率为51.74%。2)1999年、2007年太湖流域生态健康评价结果为不健康,2011—2020年处于一般健康至健康状态,其中2015年、2017年生态健康评价指数降低,但总体上2011—2020年流域健康状况呈好转趋势。2011年之后太湖流域健康状况好转主要得益于近十几年中央与地方合力进行流域治理、生态修复和综合管理。2015年、2017年流域生态健康指数波动主要归因于不利的气象因素。3)大型水生植被覆盖度、湖泊总磷达标率、湖泊TSI、浮游植物多样性指数这4项指标的变化与太湖流域生态健康评价指数的变化及健康水平相关性较高,近20年来环保投资占GDP比例的提高、水资源开发利用率的优化在一定程度上减缓了这4项指标下降对太湖流域生态健康带来的不利影响。
-
关键词:
- 太湖流域 /
- PSR模型 /
- 层次分析法(AHP) /
- 生态健康 /
- 指标体系
Abstract:The Pressure State Response (PSR) model can reflect the impact of socioeconomic conditions on the ecological environment of lake water bodies. Based on the PSR model, an evaluation index system was constructed, which included 18 indicators such as population density, vegetation index, water exchange cycle, and phytoplankton diversity index. The years 1999 and 2007 were selected as the historical control years, and the ecologicalhealth status of Lake Taihu Basin from 2011 to 2020 was compared with the control years. The results displayed: (1) The weights of the state layer, pressure layer, and response layer were 0.418, 0.291 and 0.291, respectively. The indicators that had a greater impact on the ecological health of Lake Taihu Basin were mainly the coverage of large aquatic vegetation, the rate of reaching the standard of total phosphorus in lakes, the proportion of environmental protection investment in GDP, the comprehensive trophic status index (TSI) of lakes, the utilization and development rate of water resources, and the diversity index of phytoplankton, with an overall contribution rate of 51.74%. (2)The ecological health assessment results of Lake Taihu Basin in 1999 and 2007 were unhealthy, and it was generally healthy to healthy from 2011 to 2020. The ecological health assessment index decreased in 2015 and 2017, but the overall health status of the basin was improving in 2011-2020. After 2011, the improvement of Lake Taihu Basin health was mainly due to pollution control, ecological restoration and management of the state and local government. The fluctuation of the basin ecological health index in 2015 and 2017 was mainly due to adverse meteorological factors. (3)Changes of large aquatic vegetation coverage, total phosphorus compliance rate, TSI, and phytoplankton biodiversity index were consistent with the changes of ecological health assessment index and the health level of Lake Taihu Basin. In the past 20 years, the increase of the proportion of environmental protection investment in GDP and the optimization of water resources development and utilization had alleviated the adverse impact of the decline of the four indicators on the ecological health of Lake Taihu Basin to a certain extent.
-
Key words:
- Lake Taihu Basin /
- PSR model /
- analytic hierarchy process (AHP) /
- ecological health /
- indicator system
-
表 1 湖泊流域生态健康评价指标体系
Table 1. Ecological health evaluation index system of lake basin
目标层 准则层 指标层 单位 指标
属性流域生态
健康评价
(A)压力(B1) 人口密度(C11) 人/km2 逆向 环保投资占GDP比例(C12) % 正向 建成区面积比例(C13) % 逆向 流域植被指数(C14) 正向 自然湖岸带比例(C15) % 正向 总用水量(C16) 亿m3 逆向 水资源开发利用率(C17) % 逆向 总氮排放量(C18) 万t 逆向 总磷排放量(C19) 万t 逆向 状态(B2) 可利用水资源量(C21) 亿m3 正向 湖泊换水周期(C22) d 逆向 湖泊总氮达标率(C23) % 正向 湖泊总磷达标率(C24) % 正向 湖泊TSI(C25) 逆向 响应(B3) 浮游植物多样性指数(C31) 正向 浮游动物多样性指数(C32) 正向 底栖动物多样性指数(C33) 正向 大型水生植被覆盖度(C34) 正向 表 2 湖泊流域生态健康评价指标体系不同指标权重
Table 2. Weight values of different indicators of ecological health evaluation index system of lake basin
目标层 准则层 权重 指标层 权重 综合权重 流域生态健康评价(A) 压力(B1) 0.418 0 人口密度(C11) 0.064 5 0.026 9 环保投资占GDP比例(C12) 0.213 8 0.089 4 建成区面积比例(C13) 0.117 3 0.049 0 流域植被指数(C14) 0.061 2 0.025 6 自然湖岸带比例(C15) 0.059 3 0.024 8 总用水量(C16) 0.162 2 0.067 8 水资源开发利用率(C17) 0.175 1 0.073 2 总氮排放量(C18) 0.079 8 0.033 4 总磷排放量(C19) 0.066 8 0.027 9 状态(B2) 0.291 0 可利用水资源量(C21) 0.067 0 0.019 5 湖泊换水周期(C22) 0.152 3 0.044 3 湖泊总氮达标率(C23) 0.190 7 0.055 4 湖泊总磷达标率(C24) 0.324 7 0.094 5 湖泊TSI(C25) 0.265 3 0.077 2 响应(B3) 0.291 0 浮游植物多样性指数(C31) 0.214 0 0.062 3 浮游动物多样性指数(C32) 0.170 1 0.049 5 底栖动物多样性指数(C33) 0.200 8 0.058 5 大型水生植被覆盖度(C34) 0.415 1 0.120 8 表 3 湖泊流域生态健康指数(CEI)分级标准
Table 3. Classification standard of CEI for lake basin
CEI 健康分级 <0.2 非常不健康 0.2~0.4 不健康 0.4~0.6 一般健康 0.6~0.8 健康 0.8~1.0 非常健康 -
[1] XU L T, CHEN S S. Coupling coordination degree between social-economic development and water environment: a case study of Taihu Lake Basin, China[J]. Ecological Indicators,2023,148:110118. [2] 李港, 陈诚, 姚斯洋, 等. 基于压力-状态-响应和物元可拓模型的城市河流健康评价[J]. 生态学报,2022,42(9):3771-3781.LI G, CHEN C, YAO S Y, et al. Health assessment of urban river based on pressure-state-response and matter-element extension model[J]. Acta Ecologica Sinica,2022,42(9):3771-3781. [3] 戴全厚, 刘国彬, 田均良, 等. 侵蚀环境小流域生态经济系统健康定量评价[J]. 生态学报,2006,26(7):2219-2228.DAI Q H, LIU G B, TIAN J L, et al. Health diagnoses of eco-economy system in Zhifanggou small watershed on typical erosion environment[J]. Acta Ecologica Sinica,2006,26(7):2219-2228. [4] 马克明, 孔红梅, 关文彬, 等. 生态系统健康评价: 方法与方向[J]. 生态学报,2001,21(12):2106-2116. doi: 10.3321/j.issn:1000-0933.2001.12.020MA K M, KONG H M, GUAN W B, et al. Ecosystem health assessment: methods and directions[J]. Acta Ecologica Sinica,2001,21(12):2106-2116. doi: 10.3321/j.issn:1000-0933.2001.12.020 [5] RAPPORT D J T C, REGIER H A. Ecosystem medicine[J]. The Bulletin of the Ecological Society of America,1979,60(4):180-182. [6] 高丽萍, 雷冬梅, 莫金宵, 等. 基于PSR模型和景观格局指数的滇池流域生态系统健康评价[J]. 环境科学导刊,2023,42(4):84-90.GAO L P, LEI D M, MO J X, et al. Ecosystem health assessment of the Dianchi Lake Basin based on PSR model and landscape pattern indexes[J]. Environmental Science Survey,2023,42(4):84-90. [7] 何琼. 巢湖流域生态安全的综合评价研究[D]. 合肥: 合肥工业大学, 2004. [8] ZHANG Y H, ZANG P, GUO H L, et al. Wetlands ecological security assessment in lower reaches of Taoerhe River connected with Nenjiang River using modified PSR model[J]. HydroResearch,2023,6:156-165. [9] 郑慧玲, 王永红, 马卫. 基于PSR模型的珠江三角洲生态环境脆弱性评价[J]. 水土保持通报,2022,42(4):210-217.ZHENG H L, WANG Y H, MA W. Evaluation of eco-environmental vulnerability of Pearl River Delta based on PSR model[J]. Bulletin of Soil and Water Conservation,2022,42(4):210-217. [10] LAI S H, SHA J M, ELADAWY A, et al. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou City, China[J]. Human and Ecological Risk Assessment,2022,28(7):734-761. [11] 金珂, 张丽娟, 张伟, 等. 基于环境DNA宏条形码的太湖流域底栖动物监测与生态健康评价[J]. 中国环境监测,2022,38(1):175-188.JIN K, ZHANG L J, ZHANG W, et al. Benthic macroinvertebrate biomonitoring and ecological assessment in Taihu Lake Basin based on environmental DNA metabarcoding[J]. Environmental Monitoring in China,2022,38(1):175-188. [12] 王雪然, 万荣荣, 潘佩佩. 太湖流域生态安全格局构建与调控: 基于空间形态学-最小累积阻力模型[J]. 生态学报,2022,42(5):1968-1980.WANG X R, WAN R R, PAN P P. Construction and adjustment of ecological security pattern based on MSPA-MCR Model in Taihu Lake Basin[J]. Acta Ecologica Sinica,2022,42(5):1968-1980. [13] 许妍, 高俊峰, 高永年, 等. 太湖流域生态系统健康的空间分异及其动态转移[J]. 资源科学,2011,33(2):201-209.XU Y, GAO J F, GAO Y N, et al. Spatial variation and dynamics of ecosystem health in the Taihu Lake watershed[J]. Resources Science,2011,33(2):201-209. [14] 吴浩云, 贾更华, 徐彬, 等. 1980年以来太湖总磷变化特征及其驱动因子分析[J]. 湖泊科学,2021,33(4):974-991. doi: 10.18307/2021.0402WU H Y, JIA G H, XU B, et al. Analysis of variation and driving factors of total phosphorus in Lake Taihu, 1980-2020[J]. Journal of Lake Sciences,2021,33(4):974-991. doi: 10.18307/2021.0402 [15] PRAMANIK S G M A, ALFASANE M A,ALMUJADDADE A et al. Seasonality of phytoplankton and their relationship with some environmental factors in a pond of old Dhaka[J]. Bangladesh Journal of Botany,2016,45(1):195-201. [16] 濮梦圆, 徐锦前, 胡恺源, 等. 洪泽湖湖滨带浮游动物群落结构及驱动因素[J]. 湖泊科学,2023,35(2):610-623. doi: 10.18307/2023.0218PU M Y, XU J Q, HU K Y, et al. Community structure and driving factors of zooplankton in the littoral zone of Lake Hongze[J]. Journal of Lake Sciences,2023,35(2):610-623. doi: 10.18307/2023.0218 [17] 张宇航, 颜旭, 姜兵琦, 等. 应用底栖动物完整性指数评价北京市河流水生态环境质量[J]. 湖泊科学,2023,35(6):2010-2022.ZHANG Y H, YAN X, JIANG B Q, et al. Water ecosystem quality assessment on rivers in Beijing City using benthic index of biotic integrity[J]. Journal of Lake Sciences,2023,35(6):2010-2022. [18] 叶春, 于海婵, 宋祥甫, 等. 底泥对沉水植物生长和群落结构的影响[J]. 环境科学研究,2008,21(5):178-183.YE C, YU H C, SONG X F, et al. Influence of sediment condition on growth and community structure of submerged plants[J]. Research of Environmental Sciences,2008,21(5):178-183. [19] 蒋衡, 刘蓬, 刘琳, 等. 基于PSR模型的磁湖流域生态系统健康评价[J]. 湖北大学学报(自然科学版),2021,43(6):661-666.JIANG H, LIU P, LIU L, et al. Ecosystem health assessment of Cihu Lake Basin based on PSR model[J]. Journal of Hubei University (Natural Science),2021,43(6):661-666. [20] 杨敏慧, 袁培炎, 罗天烈, 等. 基于层次分析法评估长江上游宜宾段工业园区环境风险[J]. 环境工程技术学报,2022,12(2):624-632. doi: 10.12153/j.issn.1674-991X.20210683YANG M H, YUAN P Y, LUO T L, et al. Assessment of the environmental risk of the industrial parks of Yibin section of the upper reaches of the Yangtze River based on analytic hierarchy process[J]. Journal of Environmental Engineering Technology,2022,12(2):624-632. doi: 10.12153/j.issn.1674-991X.20210683 [21] KIM S, LEE S W, PARK S R, et al. Socioeconomic risks and their impacts on ecological river health in South Korea: an application of the analytic hierarchy process[J]. Sustainability,2021,13(11):6287. [22] 张民, 阳振, 史小丽. 太湖蓝藻水华的扩张与驱动因素[J]. 湖泊科学,2019,31(2):336-344. doi: 10.18307/2019.0203ZHANG M, YANG Z, SHI X L. Expansion and drivers of cyanobacterial blooms in Lake Taihu[J]. Journal of Lake Sciences,2019,31(2):336-344. doi: 10.18307/2019.0203 [23] 吴东浩, 贾更华, 吴浩云. 2007—2019年太湖藻型和草型湖区叶绿素a变化特征及影响因子[J]. 湖泊科学,2021,33(5):1364-1375. doi: 10.18307/2021.0506WU D H, JIA G H, WU H Y. Chlorophyll-a concentration variation characteristics of the algae-dominant and macrophyte-dominant areas in Lake Taihu and its driving factors, 2007-2019[J]. Journal of Lake Sciences,2021,33(5):1364-1375. doi: 10.18307/2021.0506 [24] 吴浩云, 甘月云, 金科. “引江济太” 20年: 工程实践、成效和未来挑战[J]. 湖泊科学,2022,34(5):1393-1412. doi: 10.18307/2022.0500WU H Y, GAN Y Y, JIN K. A retrospect on the water diversion project from Yangtze River to Lake Taihu during 2002-2021: practices, achievements and future challenges[J]. Journal of Lake Sciences,2022,34(5):1393-1412. doi: 10.18307/2022.0500 [25] SHI X L, YANG J S, CHEN K N, et al. Review on the control and mitigation strategies of lake cyanobacterial blooms[J]. Journal of Lake Sciences,2022,34(2):349-375. [26] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学,2002,14(3):193-202. doi: 10.3321/j.issn:1003-5427.2002.03.001QIN B Q. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the yangze river[J]. Journal of Lake Science,2002,14(3):193-202. doi: 10.3321/j.issn:1003-5427.2002.03.001 [27] 蔡天祎, 叶春, 李春华, 等. 太湖湖滨带水向辐射带水生植物多样性及生境因子分析[J]. 环境工程技术学报,2023,13(1):164-170. doi: 10.12153/j.issn.1674-991X.20210733CAI T Y, YE C, LI C H, et al. Analysis on aquatic macrophyte diversity and environmental factors within the radiant belt toward lake of lake-terrestrial ecotone in Lake Taihu[J]. Journal of Environmental Engineering Technology,2023,13(1):164-170. doi: 10.12153/j.issn.1674-991X.20210733 [28] 朱广伟,秦伯强,张运林,等. 近70年来太湖水体磷浓度变化特征及未来控制策略[J]. 湖泊科学,2021,33(4):957-973ZHU G W, QIN B Q, ZHANG Y L, et al. Fluctuation of phosphorus concentration in Lake Taihu in the past 70 years and future control strategy[J]. Journal of Lake Sciences,2021,33(4):957-973. [29] 贺金林. 流域水环境管理与可持续发展研究: 以太湖流域为例[D]. 镇江: 江苏大学, 2020. [30] 朱广伟. 太湖富营养化现状及原因分析[J]. 湖泊科学,2008,20(1):21-26. doi: 10.3321/j.issn:1003-5427.2008.01.003ZHU G W. Eutrophic status and causing factors for a large, shallow and subtropical Lake Taihu, China[J]. Journal of Lake Sciences,2008,20(1):21-26. doi: 10.3321/j.issn:1003-5427.2008.01.003 [31] ZHANG L M, XIA M F, ZHANG L, et al. Eutrophication status and control strategy of Taihu Lake[J]. Frontiers of Environmental Science & Engineering in China,2008,2(3):280-290. [32] QIN B Q, PAERL H W, BROOKES J D, et al. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007-2017) efforts[J]. Science Bulletin,2019,64(6):354-356. doi: 10.1016/j.scib.2019.02.008 [33] WU H Y, AUTHORITY H Y T B, RESOURCES M O W, et al. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin[J]. Water Science and Engineering,2008,1(3):36-43. [34] 钱奎梅, 陈宇炜, 宋晓兰. 太湖浮游植物优势种长期演化与富营养化进程的关系[J]. 生态科学,2008,27(2):65-70. doi: 10.3969/j.issn.1008-8873.2008.02.001QIAN K M, CHEN Y W, SONG X L. Long-term development of phytoplankton dominant species related to eutrophicarion in Lake Taihu[J]. Ecological Science,2008,27(2):65-70. ◇ doi: 10.3969/j.issn.1008-8873.2008.02.001