留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NBs-GO膜的渗透性能及其对染料截留性能

张扬天 黄一 韩昌道 钟俊磊 李民亮 陈亮 李露

张扬天,黄一,韩昌道,等.NBs-GO膜的渗透性能及其对染料截留性能[J].环境工程技术学报,2024,14(4):1112-1120 doi: 10.12153/j.issn.1674-991X.20230929
引用本文: 张扬天,黄一,韩昌道,等.NBs-GO膜的渗透性能及其对染料截留性能[J].环境工程技术学报,2024,14(4):1112-1120 doi: 10.12153/j.issn.1674-991X.20230929
ZHANG Y T,HUANG Y,HAN C D,et al.Permeability of nanobubbles-graphene oxide membrane and its dye retention performance[J].Journal of Environmental Engineering Technology,2024,14(4):1112-1120 doi: 10.12153/j.issn.1674-991X.20230929
Citation: ZHANG Y T,HUANG Y,HAN C D,et al.Permeability of nanobubbles-graphene oxide membrane and its dye retention performance[J].Journal of Environmental Engineering Technology,2024,14(4):1112-1120 doi: 10.12153/j.issn.1674-991X.20230929

NBs-GO膜的渗透性能及其对染料截留性能

doi: 10.12153/j.issn.1674-991X.20230929
基金项目: 国家自然科学基金面上项目(12074341)
详细信息
    作者简介:

    张扬天(1998—),男,硕士研究生,主要研究方向为环境科学,17326086577@163.com

    通讯作者:

    李露(1984—),女,实验师,主要从事纳米气泡的分析测试与表征,524427221@qq.com

  • 中图分类号: X703

Permeability of nanobubbles-graphene oxide membrane and its dye retention performance

  • 摘要:

    氧化石墨烯(GO)膜因其优异的物化特性、独特的水通道,被广泛应用于复杂废水中的染料分离。通过将纳米气泡(NBs)吸附到GO上,形成纳米气泡-氧化石墨烯(NBs-GO)膜,有望提高膜的染料分离性能。以NBs-GO膜处理亚甲基蓝溶液模拟的染料废水,测定了该膜的水渗透率、截留率和稳定性等指标,并探究了染料种类与浓度、膜厚度和GO的制备条件等因素对膜性能的影响。结果表明:NBs-GO膜的水渗透率相比传统GO膜高出50.8%,并且能够将亚甲基蓝的截留率维持在99.88%,具有更优的染料分离性能。此外,NBs-GO膜在72 h内展现出了良好的稳定性,截留率始终保持在90%以上。即使在改变染料种类、浓度及膜厚度等条件下,NBs-GO膜依然保持了优异的水渗透性能。纳米气泡的引入为提高GO膜的染料分离效率提供了新的思路,在染料废水的处理方面展现出巨大的发展潜力,这一研究在染料废水处理领域具有广泛的应用前景。

     

  • 图  1  制膜和过滤的示意

    Figure  1.  Schematic diagram of membrane production and filtration

    图  2  纳米气泡的粒径分布

    Figure  2.  Particle size distribution of Nanobubbles

    图  3  GO膜与NBs-GO膜的厚度

    Figure  3.  Thickness of GO membrane and NBs-GO membrane

    图  4  GO膜与NBs-GO膜的表面形貌

    Figure  4.  Surface morphology of GO membrane and NBs-GO membrane

    图  5  GO膜与NBs-GO膜的水接触角和X射线衍射表征

    Figure  5.  Characterization of water contact angle and X-Ray diffraction of GO membrane and NBs-GO membrane

    图  6  GO膜与NBs-GO膜对3种染料溶液的截留效果

    Figure  6.  Retention effects of 3 dyes by GO membrane and NBs-GO membrane

    图  7  不同反应条件对GO膜及NBs-GO膜截留亚甲基蓝效果的影响

    Figure  7.  Effect of different reaction conditions on the retention of methylene blue by GO membrane and NBs-GO membrane

    图  8  膜厚度对GO膜及NBs-GO膜截留效果的影响

    Figure  8.  Effect of membrane thickness on the retention of GO membrane and NBs-GO membrane

    图  9  不同浓度亚甲基蓝溶液对GO膜及NBs-GO膜截留效果的影响

    Figure  9.  Effect of methylene blue concentration on the retenttion of GO membrane and NBs-GO membrane

    图  10  NBs-GO膜截留亚甲基蓝染料的稳定性测试结果

    Figure  10.  Stability test of NBs-GO membrane for methylene blue dyestuff rejection

    表  1  NBs-GO膜与文献中其他纳滤膜的截留效果对比

    Table  1.   Comparison of retention effect of NBs-GO membranes with other nanofiltration membranes in the reference

    膜的种类水渗透率/
    〔L/(m2·h·MPa)〕
    截留率/%
    5p-nGOM[22]651.596.30
    GO@nylon 6-12[23]111.595.00
    ZIF-8/GO[24]600.099.00
    Polycation/GO[25]64.299.20
    HPEI/S-rGO-18[26]850.098.60
    MXene-PEI[27]50.094.70
    GO/MXene[28]170.098.60
    GOCN[29]154.085.50
    Ti2C3Tx/GO[30]3.099.50
    GO(本研究)656.499.91
    NBs-GO(本研究)868.399.93
    下载: 导出CSV
  • [1] TKACZYK A, MITROWSKA K, POSYNIAK A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review[J]. Science of the Total Environment,2020,717:137222. doi: 10.1016/j.scitotenv.2020.137222
    [2] 朱思佳. 传统染料在纺织工艺上的艺术价值[J]. 纺织报告,2023,42(5):34-36.

    ZHU S J. Artistic value of traditional dyes in textile technology[J]. Textile Reports,2023,42(5):34-36.
    [3] 成杰, 吴安理, 杨如娥, 等. 液相色谱-串联质谱法检测食品中合成染料的研究进展[J]. 食品安全质量检测学报,2021,12(20):7986-7994.

    CHENG J, WU A L, YANG R E, et al. Recent progress on detection of synthetic dyes in food by liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality,2021,12(20):7986-7994.
    [4] 张博, 吴桐, 赵富华, 等. 天然染料在造纸中应用的研究进展[J]. 纸和造纸,2010,29(5):42-44.

    ZHANG B, WU T, ZHAO F H, et al. Research progress on the application of natural dyes in paper industry[J]. Paper and Paper Making,2010,29(5):42-44.
    [5] 杨淡梅, 石兴红, 罗金梅, 等. 高效液相色谱法同时检测染发类化妆品中5种限用染料[J]. 日用化学工业,2022,52(1):103-108.

    YANG D M, SHI X H, LUO J M, et al. Simultaneous determination of 5 restricted dyes in hair dyeing cosmetics by high performance liquid chromatography[J]. China Surfactant Detergent & Cosmetics,2022,52(1):103-108.
    [6] LIN J Y, YE W Y, XIE M, et al. Environmental impacts and remediation of dye-containing wastewater[J]. Nature Reviews Earth & Environment,2023,4(11):785-803.
    [7] LIN J Y, LIN F, CHEN X Y, et al. Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge[J]. Industrial & Engineering Chemistry Research,2019,58(25):11003-11012.
    [8] 周鹏. 膜法染料废水处理工艺研究[J]. 冶金管理,2020(9):204.
    [9] 王九思. ClO2氧化-活性炭吸附法处理染色废水的试验研究[J]. 环境科学研究,2001,14(5):40-42.

    WANG J S. Study on the treatment of dyeing wastewater by ClO2 oxidation-activated carbon adsorption process[J]. Research of Environmental Sciences,2001,14(5):40-42.
    [10] XIA X M, ZHOU F, YU R S, et al. Ultrahigh water permeance of reduced graphene oxide membrane for radioactive liquid waste treatment[J]. Membranes,2021,11(11):809. doi: 10.3390/membranes11110809
    [11] YANG R J, FAN Y, YU R S, et al. Robust reduced graphene oxide membranes with high water permeance enhanced by K+ modification[J]. Journal of Membrane Science,2021,635:119437. doi: 10.1016/j.memsci.2021.119437
    [12] 刘建波, 张盼月, 曾光明, 等. 改性活性炭对硫氰酸钠膜分离浓水脱杂过程的影响因素[J]. 环境科学研究,2016,29(6):863-869.

    LIU J B, ZHANG P Y, ZENG G M, et al. Influence factors analysis on the treatment of NaSCN concentrated effluent by modified activated carbon[J]. Research of Environmental Sciences,2016,29(6):863-869.
    [13] ZHANG L L, DAI F F, YI R B, et al. Effect of physical and chemical structures of graphene oxide on water permeation in graphene oxide membranes[J]. Applied Surface Science,2020,520:146308. doi: 10.1016/j.apsusc.2020.146308
    [14] DAI F F, YU R S, YI R B, et al. Ultrahigh water permeance of a reduced graphene oxide nanofiltration membrane for multivalent metal ion rejection[J]. Chemical Communications,2020,56(95):15068-15071. doi: 10.1039/D0CC06302A
    [15] JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science,2014,343(6172):752-754. doi: 10.1126/science.1245711
    [16] 刘倩倩. 交联改性氧化石墨烯基复合膜的制备、结构调控及其在分离领域的应用[D]. 淄博: 山东理工大学, 2022.
    [17] TAKAHASHI M, SHIRAI Y, SUGAWA S. Free-radical generation from bulk nanobubbles in aqueous electrolyte solutions: ESR spin-trap observation of microbubble-treated water[J]. Langmuir,2021,37(16):5005-5011. doi: 10.1021/acs.langmuir.1c00469
    [18] 黄青, 刘爱荣, 张立娟. 微纳米气泡特性及在土壤环境改善中的应用[J]. 环境工程技术学报,2022,12(4):1324-1332.

    HUANG Q, LIU A R, ZHANG L J. Characteristics of micro-nanobubbles and their applications in soil environment improvement[J]. Journal of Environmental Engineering Technology,2022,12(4):1324-1332.
    [19] 程莹, 臧纪, 宋骏杰, 等. 基于臭氧微纳米气泡的O3-H2O2体系降解有机污染物的效能与影响因素[J]. 环境工程技术学报,2022,12(4):1317-1323.

    CHENG Y, ZANG J, SONG J J, et al. Degradation efficiency and influencing factors of organic contaminants in O3-H2O2 system based on ozone micro-nanobubbles[J]. Journal of Environmental Engineering Technology,2022,12(4):1317-1323.
    [20] 元妙新, 占升, 张欣, 等. 氧气微纳米气泡在地下水原位修复中的应用研究[J]. 环境工程技术学报,2022,12(4):1342-1349.

    YUAN M X, ZHAN S, ZHANG X, et al. Research on the application of oxygen micro-nanobubbles in situ remediation of groundwater[J]. Journal of Environmental Engineering Technology,2022,12(4):1342-1349.
    [21] HAN Y, XU Z, GAO C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials,2013,23(29):3693-3700. doi: 10.1002/adfm.201202601
    [22] ZHANG Z J, XIAO X, ZHOU Y H, et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration[J]. ACS Nano,2021,15(8):13178-13187. doi: 10.1021/acsnano.1c02719
    [23] LEI Y T, OSSONON B D, CHEN J Y, et al. Electrochemical characterization of graphene-type materials obtained by electrochemical exfoliation of graphite[J]. Journal of Electroanalytical Chemistry,2021,887:115084. doi: 10.1016/j.jelechem.2021.115084
    [24] ZHANG W H, YIN M J, ZHAO Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology,2021,16(3):337-343. doi: 10.1038/s41565-020-00833-9
    [25] WANG L, WANG N X, LI J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Separation and Purification Technology,2016,160:123-131. doi: 10.1016/j.seppur.2016.01.024
    [26] JIANG Y T, LIANG P, TANG M J, et al. A high-throughput screening permeability separator with high catalytic conversion kinetics for Li–S batteries[J]. Journal of Materials Chemistry A,2022,10(41):22080-22092. doi: 10.1039/D2TA04592C
    [27] LOW Z X, JI J, BLUMENSTOCK D, et al. Fouling resistant 2D boron nitride nanosheet–PES nanofiltration membranes[J]. Journal of Membrane Science,2018,563:949-956. doi: 10.1016/j.memsci.2018.07.003
    [28] YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials,2017,16(12):1198-1202. doi: 10.1038/nmat5025
    [29] LIU L F, ZHOU Y S, XUE J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification[J]. AIChE Journal,2019,65(10):e16699. doi: 10.1002/aic.16699
    [30] NIE L N, CHUAH C Y, BAE T H, et al. Graphene-based advanced membrane applications in organic solvent nanofiltration[J]. Advanced Functional Materials,2021,31(6):2006949. ◇ doi: 10.1002/adfm.202006949
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  86
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-31
  • 录用日期:  2024-06-08
  • 修回日期:  2024-03-28

目录

    /

    返回文章
    返回