Difference measurement, source decomposition and spatial-temporal evolution of carbon ecological security in resource-based cities of the Yellow River Basin
-
摘要:
黄河流域作为我国重要的“能源流域”,分析其资源型城市碳生态安全空间差异、差异来源与动态演进,有助于优化全流域碳生态安全布局。在构建黄河流域资源型城市碳生态安全评价指标体系的基础上,选用TOPSIS模型与Dagum基尼系数,评价其2012—2021年碳生态安全水平并分析其差异来源,进一步引入核密度估计法探究时空演变特征。结果表明:黄河流域资源型城市碳生态安全水平逐年提升且呈现“小幅提升—快速上涨”的特征,上游资源型城市碳生态安全水平高于中、下游。不同地区资源型城市碳生态安全的空间非均衡显著,区域间差异是影响碳生态安全总体差异的主要来源,超变密度对其整体差异影响增强。依据核密度估计结果,不同地区资源型城市碳安全水平差异趋于缩小,但中游差异性变小不明显。结合“双碳”目标,黄河流域不同地区资源型城市应制定不同区域碳生态安全目标和举措,实现全域碳生态安全平衡。
Abstract:The Yellow River Basin is regarded as an important "energy basin" in China. The spatial difference, sources of difference and dynamic evolution of carbon ecological security in resource-based cities were analyzed to optimize the overall layout of the basin's carbon ecological security. An evaluation index system for carbon ecological security of resource-based cities in the Yellow River Basin was constructed, and the TOPSIS model and Dagum Gini coefficient were selected to evaluate the level of carbon ecological security from 2012 to 2021 and analyze the sources of difference for carbon ecological security. The characteristics of spatial-temporal evolution were explored by the kernel density estimation method. The results showed that the carbon ecological security level had been increasing in the resource-based cities of the Yellow River Basin year by year, which had the characteristic of "slight increase - rapid increase", and the carbon ecological security level in the resource-based cities of the upstream region was higher than that in the middle and downstream regions. The spatial imbalance of carbon ecological security in the resource-based cities of different regions was very significant; the regional difference was the main source of the overall difference in carbon ecological security, and the impact of super variable density on the overall difference was increasing. According to the estimation results of the kernel density, the difference in carbon security levels was gradually narrowing among the resource-based cities in different regions of the Yellow River Basin, but the difference in the middle reaches was not obvious. Based on the "carbon peaking and carbon neutrality goals", the resource-based cities in different regions of the Yellow River Basin should formulate different regional carbon ecological security goals and measures to achieve a balance of carbon ecological security across the entire region.
-
表 1 资源型城市碳生态安全评价指标体系
Table 1. Evaluation index system of carbon ecological security in resource-based cities
目标层 要素层 指标层 属性 权重 生态-环境系统(A) 生态建设(A1) 森林覆盖率(A11) + 0.023 造林面积(A12) + 0.032 人均公园绿地面积(A13) + 0.010 人均水资源量(A14) + 0.024 建成区绿化覆盖率(A15) + 0.015 碳汇量(A16) + 0.109 环境破坏(A2) 单位GDP碳排放量(A21) − 0.114 单位GDP工业SO2排放量(A22) − 0.048 单位GDP工业烟粉尘排放量( A23) − 0.053 单位GDP能耗(A24 ) − 0.067 单位GDP耗水量(A25 ) − 0.026 环境治理(A3) 节能环保支出(A31) + 0.028 生活垃圾无害化处理率(A32) + 0.013 工业固体废物综合利用率(A33) + 0.019 废水达标排放率(A34) + 0.022 生活污水处理率(A35) + 0.013 空气质量优良率(A36) + 0.009 环境突发事件次数(A37) − 0.006 社会-经济系统(B) 经济发展(B1) GDP(B11) + 0.033 能源工业投资(B12) − 0.031 固定资产投资(B13) + 0.027 人均GDP(B14) + 0.016 产业结构(B2) 第二产业增加值占GDP比例(B21) − 0.055 原煤消费量占比(B22) − 0.034 第三产业增加值占GDP比例(B23) + 0.015 社会发展(B3) 城市化率(B31) − 0.018 人口密度(B32) − 0.014 居民收入增长率(B33) − 0.025 绿色转型(B4) 环境规制(B41) + 0.036 技术创新(B42) + 0.048 R&D经费投资(B43) + 0.017 注:+表示正向关系,−表示负向关系。 表 2 不同地区资源型城市的碳生态安全基尼系数
Table 2. Dagum Gini coefficient of carbon ecological security in resource-based cities of different regions
年份 整体碳生态安全
基尼系数不同地区基尼系数 地区间基尼系数差异 上游 中游 下游 上游—中游 上游—下游 中游—下游 2012 0.287 0.089 0.149 0.168 0.270 0.314 0.235 2013 0.270 0.085 0.143 0.155 0.258 0.292 0.234 2014 0.261 0.080 0.137 0.152 0.238 0.278 0.232 2015 0.249 0.077 0.131 0.142 0.224 0.277 0.221 2016 0.251 0.073 0.129 0.129 0.211 0.264 0.199 2017 0.236 0.064 0.122 0.132 0.213 0.237 0.196 2018 0.210 0.061 0.121 0.125 0.192 0.216 0.182 2019 0.200 0.056 0.122 0.120 0.194 0.229 0.176 2020 0.178 0.047 0.118 0.117 0.189 0.219 0.171 2021 0.162 0.046 0.115 0.113 0.182 0.199 0.170 表 3 不同地区资源型城市的碳生态安全基尼系数及分解结果
Table 3. Dagum Gini coefficient and decomposition results for carbon ecological security in resource-based cities of different regions
年份 整体碳生态安全
基尼系数基尼系数 贡献率/% 地区内 地区间 超变密度 地区内 地区间 超变密度 2012 0.287 0.046 0.230 0.011 0.160 0.801 0.038 2013 0.270 0.044 0.213 0.013 0.163 0.789 0.048 2014 0.261 0.042 0.205 0.014 0.161 0.785 0.054 2015 0.249 0.041 0.192 0.016 0.165 0.771 0.064 2016 0.251 0.041 0.191 0.019 0.163 0.761 0.076 2017 0.236 0.040 0.178 0.018 0.169 0.754 0.076 2018 0.210 0.037 0.152 0.021 0.176 0.724 0.100 2019 0.200 0.039 0.139 0.022 0.195 0.695 0.110 2020 0.178 0.038 0.118 0.022 0.213 0.663 0.124 2021 0.162 0.036 0.103 0.023 0.222 0.636 0.142 -
[1] 秦华, 任保平. 黄河流域城市群高质量发展的目标及其实现路径[J]. 经济与管理评论,2021,37(6):26-37.QIN H, REN B P. The goal and realization path of high-quality development of urban agglomeration in the Yellow River Basin[J]. Review of Economy and Management,2021,37(6):26-37. [2] 连煜. 坚持黄河高质量生态保护, 推进流域高质量绿色发展[J]. 环境保护,2020,48(增刊1):22-27. [3] 杨兆青, 陆兆华, 刘丹, 等. 煤炭资源型城市生态安全评价: 以锡林浩特市为例[J]. 生态学报,2021,41(1):280-289.YANG Z Q, LU Z H, LIU D, et al. Ecological security evaluation on the coal resource-based city: a case of Xilinhot City[J]. Acta Ecologica Sinica,2021,41(1):280-289. [4] TIAN J Y, GANG G S. Research on regional ecological security assessment[J]. Energy Procedia,2012,16:1180-1186. doi: 10.1016/j.egypro.2012.01.188 [5] WANG D L, HUANG Z Y, WANG Y D, et al. Ecological security of mineral resource-based cities in China: Multidimensional measurements, spatiotemporal evolution, and comparisons of classifications[J]. Ecological Indicators,2021,132:108269. doi: 10.1016/j.ecolind.2021.108269 [6] 王怡然, 王雅晖, 杨金霖, 等. 黄河流域森林生态安全等级评价与时空演变分析[J]. 生态学报,2022,42(6):2112-2121.WANG Y R, WANG Y H, YANG J L, et al. Forest ecological security rating and its spatio-temporal evolution analysis in the Yellow River Basin[J]. Acta Ecologica Sinica,2022,42(6):2112-2121. [7] 张国兴, 张婧钰, 周桂芳. 黄河流域资源型城市生态安全等级边界及演化趋势[J]. 资源科学,2023,45(4):762-775. doi: 10.18402/resci.2023.04.07ZHANG G X, ZHANG J Y, ZHOU G F. Ecological security level of resource-based cities in the Yellow River Basin and trend of change[J]. Resources Science,2023,45(4):762-775. doi: 10.18402/resci.2023.04.07 [8] 陶晓燕. 资源枯竭型城市生态安全评价及趋势分析: 以焦作市为例[J]. 干旱区资源与环境,2014,28(2):53-59. doi: 10.3969/j.issn.1003-7578.2014.02.010TAO X Y. Urban ecological safety evaluation and trend analysis for resource-exhausted city: a case of Jiaozuo City[J]. Journal of Arid Land Resources and Environment,2014,28(2):53-59. doi: 10.3969/j.issn.1003-7578.2014.02.010 [9] LIU Y Y, WANG C, WANG H, et al. An integrated ecological security early-warning framework in the national nature reserve based on the gray model[J]. Journal for Nature Conservation,2023,73:126394. doi: 10.1016/j.jnc.2023.126394 [10] 法子薇, 李新春. 基于云模型的煤矿资源型城市生态风险评价研究[J]. 科技管理研究,2021,41(9):190-194. doi: 10.3969/j.issn.1000-7695.2021.09.025FA Z W, LI X C. Study on ecological risk assessment of coal-mining cities based on cloud mode[J]. Science and Technology Management Research,2021,41(9):190-194. doi: 10.3969/j.issn.1000-7695.2021.09.025 [11] 冯琰玮, 甄江红. 黄河流域内蒙古段生态安全格局优化研究[J]. 中国农业资源与区划,2022,43(10):129-138.FENG Y W, ZHEN J H. Eco-spatial security optimization in watershed of the Yellow River in Inner Mongnolia[J]. Chinese Journal of Agricultural Resources and Regional Planning,2022,43(10):129-138. [12] LI S C, ZHAO Y L, XIAO W, et al. Optimizing ecological security pattern in the coal resource-based city: a case study in Shuozhou City, China[J]. Ecological Indicators,2021,130:108026. doi: 10.1016/j.ecolind.2021.108026 [13] YUAN Y, BAI Z K, ZHANG J N, et al. Increasing urban ecological resilience based on ecological security pattern: a case study in a resource-based city[J]. Ecological Engineering,2022,175:106486. doi: 10.1016/j.ecoleng.2021.106486 [14] 张晓平, 胡紫红, 危小建, 等. 资源枯竭型城市生态保护修复关键区识别研究: 以江西省大余县为例[J]. 生态与农村环境学报,2021,37(8):1031-1040.ZHANG X P, HU Z H, WEI X J, et al. Study on identification of key areas for ecological protection and restoration in resource-exhausted region: take Dayu County, Jiangxi as an example[J]. Journal of Ecology and Rural Environment,2021,37(8):1031-1040. [15] 赵先贵, 肖玲, 马彩虹, 等. 山西省碳足迹动态分析及碳排放等级评估[J]. 干旱区资源与环境,2014,28(9):21-26.ZHAO X G, XIAO L, MA C H, et al. Dynamic analysis of carbon footprint and evaluation of carbon emission degree in Shanxi Province[J]. Journal of Arid Land Resources and Environment,2014,28(9):21-26. [16] 胡剑波, 桂姗姗. 西南民族地区碳安全等级评估[J]. 江苏农业科学,2017,45(6):269-272. [17] 韦良焕, 林宁, 鞠美庭. 基于碳足迹和碳承载力的新疆碳安全评价[J]. 水土保持通报,2017,37(1):281-285.WEI L H, LIN N, JU M T. Carbon safety assessment based on carbon footprint and carbon capacity in Xinjiang Uygur Autonomous Region[J]. Bulletin of Soil and Water Conservation,2017,37(1):281-285. [18] 黄忠华, 周思超. 浙江省碳安全评价及其影响因素研究[J]. 水土保持通报,2018,38(4):234-240.HUANG Z H, ZHOU S C. Carbon security assessment and its influencing factors in Zhejiang Province[J]. Bulletin of Soil and Water Conservation,2018,38(4):234-240. [19] 邱高会. 区域碳安全评价及预测研究[J]. 生态经济,2014,30(8):14-17. doi: 10.3969/j.issn.1671-4407.2014.08.004QIU G H. Region carbon safety assessment and prediction[J]. Ecological Economy,2014,30(8):14-17. doi: 10.3969/j.issn.1671-4407.2014.08.004 [20] 吴立军, 田启波. 碳中和目标下中国地区碳生态安全与生态补偿研究[J]. 地理研究,2022,41(1):149-166. doi: 10.11821/dlyj020210778WU L J, TIAN Q B. Study on regional carbon ecological security and ecological compensation in China under carbon neutralization target[J]. Geographical Research,2022,41(1):149-166. doi: 10.11821/dlyj020210778 [21] 蒋毓琪, 杨怡康, 田文博, 等. 黄河流域碳生态安全水平空间格局与动态演进[J]. 水土保持通报,2023,43(5):419-425.JIANG Y Q, YANG Y K, TIAN W B, et al. Spatial pattern and dynamic evolution of carbon ecological security level in Yellow River Basin[J]. Bulletin of Soil and Water Conservation,2023,43(5):419-425. [22] 卢硕, 张文忠, 李佳洺. 资源禀赋视角下环境规制对黄河流域资源型城市产业转型的影响[J]. 中国科学院院刊,2020,35(1):73-85.LU S, ZHANG W Z, LI J M. Influence of environmental regulations on industrial transformation of resource-based cities in the Yellow River Basin under resource endowment[J]. Bulletin of Chinese Academy of Sciences,2020,35(1):73-85. [23] 陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报,2019,74(12):2431-2436. doi: 10.11821/dlxb201912001LU D D, SUN D Q. Development and management tasks of the Yellow River Basin: a preliminary understanding and suggestion[J]. Acta Geographica Sinica,2019,74(12):2431-2436. doi: 10.11821/dlxb201912001 [24] 蒋毓琪, 杨怡康, 朱少英. 黄河流域山西矿区自然资本占用动态评估及驱动机制[J]. 环境工程技术学报,2022,12(4):1264-1271. doi: 10.12153/j.issn.1674-991X.20210327JIANG Y Q, YANG Y K, ZHU S Y. Dynamic evaluation and driving mechanism of natural capital occupation in Shanxi mining areas of the Yellow River Basin[J]. Journal of Environmental Engineering Technology,2022,12(4):1264-1271. doi: 10.12153/j.issn.1674-991X.20210327 [25] 王瑛, 常泉英. 基于二次赋权的TOPSIS法的城市环境质量动态评价[J]. 安全与环境学报,2018,18(2):784-788.WANG Y, CHANG Q Y. On the dynamic evaluation of the environmental qualities by using the TOPSIS method with double weights[J]. Journal of Safety and Environment,2018,18(2):784-788. [26] 李智慧, 王凯, 余芳芳, 等. 中国旅游业碳排放—旅游经济—生态环境耦合协调时空分异研究[J]. 地理与地理信息科学,2022,38(6):110-118. doi: 10.3969/j.issn.1672-0504.2022.06.015LI Z H, WANG K, YU F F, et al. Temporal and spatial differentiation of coupling coordination of tourism carbon emissions, tourism economy and ecological environment in China[J]. Geography and Geo-Information Science,2022,38(6):110-118. doi: 10.3969/j.issn.1672-0504.2022.06.015 [27] 吴艳霞, 罗恒, 梁志康. 长江经济带生态安全测度研究[J]. 生态学报,2020,40(19):6761-6775.WU Y X, LUO H, LIANG Z K. Ecological security measurement of the Yangtze River economic belt[J]. Acta Ecologica Sinica,2020,40(19):6761-6775. [28] 赵金辉, 田林, 李思源, 等. 黄河流域能源与环境—经济—生态耦合协调发展研究[J]. 人民黄河,2022,44(11):13-19. doi: 10.3969/j.issn.1000-1379.2022.11.003ZHAO J H, TIAN L, LI S Y, et al. Research on the coupling and coordination development of energy and environment-economy-ecology in the Yellow River Basin[J]. Yellow River,2022,44(11):13-19. doi: 10.3969/j.issn.1000-1379.2022.11.003 [29] 姚材仪, 何艳梅, 程建兄, 等. 岷江流域生态安全格局评价与优化: 基于最小累积阻力模型和重力模型[J]. 生态学报,2023,43(17):7083-7096.YAO C Y, HE Y M, CHENG J X, et al. Evaluation of ecological security pattern and optimization suggestions in Minjiang River Basin based on MCR model and gravity model[J]. Acta Ecologica Sinica,2023,43(17):7083-7096. [30] 熊建新, 王鑫滨, 赵迪, 等. 城镇化进程中生态承载力系统耦合时空格局及影响因素: 以洞庭湖区为例[J]. 经济地理,2022,42(10):83-91.XIONG J X, WANG X B, ZHAO D, et al. Spatiotemporal pattern and influencing factor of coupling of ecological carrying capacity in the process of urbanization: a case study of Dongting Lake region[J]. Economic Geography,2022,42(10):83-91. [31] 崔盼盼, 赵媛, 郝丽莎, 等. 中国能源行业碳排放强度下降过程中的省际减排成效评价[J]. 地理研究,2020,39(8):1864-1878. doi: 10.11821/dlyj020190688CUI P P, ZHAO Y, HAO L S, et al. Evaluation on the effectiveness of provincial emission reduction in the process of carbon emission intensity decline in China's energy industry[J]. Geographical Research,2020,39(8):1864-1878. doi: 10.11821/dlyj020190688 [32] 彭建军, 段春梅. 外部压力+内部能力: 政府治理双重维度对碳排放强度的影响研究[J]. 中国环境管理,2023,15(5):16-26.PENG J J, DUAN C M. External pressure and internal capacity: a study on the influence of the dual dimensions of government governance on carbon emission intensity[J]. Chinese Journal of Environmental Management,2023,15(5):16-26. [33] 黄磊, 吴传清. 长江经济带城市工业绿色发展效率及其空间驱动机制研究[J]. 中国人口·资源与环境,2019,29(8):40-49. doi: 10.12062/cpre.20190320HUANG L, WU C Q. Industrial green development efficiency and spatial driven mechanism in cities of the Yangtze River Economic Belt[J]. China Population, Resources and Environment,2019,29(8):40-49. doi: 10.12062/cpre.20190320 [34] SMARZYNSKA B S, WEI S J. Pollution havens and foreign direct investment: dirty secret or popular myth[J]. Contributions in Economic Analysis & Policy,2001,3(2):1-31. [35] 赵锋, 杨涛. 黄河流域生态环境与经济协调发展的时空演化分析[J]. 石河子大学学报(哲学社会科学版),2021,35(1):63-70.ZHAO F, YANG T. Analysis on the spatio-temporal evolution of the coordinated development of ecological environment and economy in the Yellow River Basin[J]. Journal of Shihezi University (Philosophy and Social Sciences),2021,35(1):63-70. [36] HAO Y, LIAO H, WEI Y M. Is China's carbon reduction target allocation reasonable: an analysis based on carbon intensity convergence[J]. Applied Energy,2015,142:229-239. doi: 10.1016/j.apenergy.2014.12.056 [37] 王少剑, 黄永源. 中国城市碳排放强度的空间溢出效应及驱动因素[J]. 地理学报,2019,74(6):1131-1148. doi: 10.11821/dlxb201906005WANG S J, HUANG Y Y. Spatial spillover effect and driving forces of carbon emission intensity at city level in China[J]. Acta Geographica Sinica,2019,74(6):1131-1148. doi: 10.11821/dlxb201906005 [38] 闫东升, 孙伟, 李平星. 中国城乡居民收入差距对碳排放强度的作用机制: 基于面板数据的实证分析[J]. 自然资源学报,2023,38(9):2403-2417. doi: 10.31497/zrzyxb.20230914YAN D S, SUN W, LI P X. Research on the mechanism of urban-rural residents income gap on carbon emission intensity: a panel data analysis[J]. Journal of Natural Resources,2023,38(9):2403-2417. doi: 10.31497/zrzyxb.20230914 [39] 梁家豪, 王振北, 朱洪涛, 等. 基于水污染治理目标需求的AHP-TOPSIS技术适用性评估方法研究[J]. 环境工程技术学报,2022,12(2):390-398. doi: 10.12153/j.issn.1674-991X.20210713LIANG J H, WANG Z B, ZHU H T, et al. Research on AHP-TOPSIS technology applicability evaluation method based on water pollution treatment target demand[J]. Journal of Environmental Engineering Technology,2022,12(2):390-398. doi: 10.12153/j.issn.1674-991X.20210713 [40] 余灏哲, 韩美. 基于模糊物元模型的山东省水资源安全TOPSIS评价[J]. 安全与环境工程,2015,22(6):1-6.YU H Z, HAN M. TOPSIS evaluation of water resource security in Shandong Province based on fuzzy matter-element model[J]. Safety and Environmental Engineering,2015,22(6):1-6. [41] 章激扬. 长三角城市群创新发展空间差异及收敛性研究: 基于Dagum基尼系数分解[J]. 长江流域资源与环境,2023,32(2):235-249.ZHANG J Y. Spatial difference and convergence of innovative development in Yangtze River Delta: based on Dagum Gini coefficient and decomposition[J]. Resources and Environment in the Yangtze Basin,2023,32(2):235-249. [42] 刘娇妹, 王刚, 付晓娣, 等. 黄河流域河南段生态保护和高质量发展评价研究[J]. 人民黄河,2023,45(7):7-13. doi: 10.3969/j.issn.1000-1379.2023.07.002LIU J M, WANG G, FU X D, et al. Evaluation of ecological protection and high-quality development level in Henan section of the Yellow River Basin[J]. Yellow River,2023,45(7):7-13. doi: 10.3969/j.issn.1000-1379.2023.07.002 [43] DAGUM C. A new approach to the decomposition of the Gini income inequality ratio[J]. Empirical Economics,1997,22(4):515-531. doi: 10.1007/BF01205777 [44] 刘宜卓, 石悦泽, 荆克迪. “双碳” 目标下黄河流域九省区横向区域碳补偿机制构建研究[J]. 生态经济,2024,40(1):29-37.LIU Y Z, SHI Y Z, JING K D. Research on the construction of horizontal regional carbon compensation mechanism in nine provinces of the Yellow River Basin with the goal of "double carbon"[J]. Ecological Economy,2024,40(1):29-37. [45] 夏美君, 李健, 闫永蚕. 京津冀城市群生态福利绩效时空格局及演进特征[J]. 生态环境学报,2023,32(4):814-824.XIA M J, LI J, YAN Y C. Spatial-temporal patterns and evolution characteristics of ecological wellbeing performance in Beijing-Tianjin-Hebei urban agglomeration[J]. Ecology and Environmental Sciences,2023,32(4):814-824. [46] 席振鑫, 马丽, 金凤君, 等. 黄河流域典型资源型城市工业转型的时空特征、类型与路径[J]. 资源科学,2023,45(10):1977-1991. doi: 10.18402/resci.2023.10.05XI Z X, MA L, JIN F J, et al. Spatiotemporal characteristics, types, and paths of industrial transformation in typical resource-based cities in the Yellow River Basin[J]. Resources Science,2023,45(10):1977-1991. doi: 10.18402/resci.2023.10.05 [47] 任嘉敏, 郭付友, 赵宏波, 等. 黄河流域资源型城市工业绿色转型绩效评价及时空异质性特征[J]. 中国人口·资源与环境,2023,33(6):151-160. doi: 10.12062/cpre.20230122REN J M, GUO F Y, ZHAO H B, et al. Performance evaluation and spatio-temporal heterogeneity characteristics of industrial green transformation of resource-based cities in the Yellow River Basin[J]. China Population, Resources and Environment,2023,33(6):151-160. doi: 10.12062/cpre.20230122 [48] 李思雅, 梁伟, 吕一河, 等. 黄河流域经济发展与生态环境压力的脱钩关系及其驱动效应分析[J]. 生态学报,2023,43(13):5417-5431.LI S Y, LIANG W, LÜ Y H, et al. Decoupling relationship and driving effect between economic development and eco-environmental pressure in the Yellow River Basin[J]. Acta Ecologica Sinica,2023,43(13):5417-5431. ⊕