留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长三角地区城市污泥中银污染特征和健康风险研究

刘海龙 甘云杰 汪虎 张婉莹 李昕宇 蔡伟萍 陈占 李敏

刘海龙,甘云杰,汪虎,等.长三角地区城市污泥中银污染特征和健康风险研究[J].环境工程技术学报,2024,14(4):1319-1329 doi: 10.12153/j.issn.1674-991X.20240027
引用本文: 刘海龙,甘云杰,汪虎,等.长三角地区城市污泥中银污染特征和健康风险研究[J].环境工程技术学报,2024,14(4):1319-1329 doi: 10.12153/j.issn.1674-991X.20240027
LIU H L,GAN Y J,WANG H,et al.Silver pollution characteristics and health risks in sewage sludge in the Yangtze River Delta region[J].Journal of Environmental Engineering Technology,2024,14(4):1319-1329 doi: 10.12153/j.issn.1674-991X.20240027
Citation: LIU H L,GAN Y J,WANG H,et al.Silver pollution characteristics and health risks in sewage sludge in the Yangtze River Delta region[J].Journal of Environmental Engineering Technology,2024,14(4):1319-1329 doi: 10.12153/j.issn.1674-991X.20240027

长三角地区城市污泥中银污染特征和健康风险研究

doi: 10.12153/j.issn.1674-991X.20240027
基金项目: 国家环境保护城市土壤污染控制与修复工程技术中心开放基金项目(USCR-202207);国家自然科学基金项目(42307005);江苏省自然科学基金项目(BK20220599);山东省自然科学基金项目(ZR2021QE271)
详细信息
    作者简介:

    刘海龙(1988—),男,讲师,博士,主要从事土壤污染与修复研究,liuhailong@yzu.edu.cn

    通讯作者:

    李敏(1989—),女,讲师,博士,主要从事纳米材料的环境效应研究,molulimin@yzu.edu.cn

  • 中图分类号: X703

Silver pollution characteristics and health risks in sewage sludge in the Yangtze River Delta region

  • 摘要:

    采集了长江三角洲(长三角)地区13个城市的22个污泥样品,分析了该地区城市污泥中金属银(Ag)的含量、尺寸特征,考察了污泥中Ag的形态分布和生物可利用性,并分别利用固体废物浸出毒性评价方法和美国国家环境保护局推荐的健康风险评价方法评估了污泥中Ag的浸出毒性风险和人体健康风险。结果表明,不同城市污泥中Ag浓度(0.08~721 mg/kg)存在较大差异,Ag平均浓度表现为工业污泥(101 mg/kg)>混流污泥(1.89 mg/kg)>市政污泥(0.99 mg/kg)。单颗粒电感耦合等离子质谱表征结果表明,不同类型污泥中均存在含Ag的纳米颗粒,尺寸为17.7~19.0 nm。赋存形态分析结果表明,酸性或有机质浓度较低的2种工业污泥(南京S17、南京S22)中,弱酸提取态Ag占比较高,分别为60.0%和15.6%;其余20种污泥中的Ag主要以稳定态赋存(残渣态和铁锰氧化物态),说明该地区大部分(90.9%)污泥中Ag的迁移能力较低。EDTA提取效率结果也表明,除1种酸性工业污泥(南京S17)外,其他21种污泥中的Ag的生物可利用性均较低。浸出毒性结果表明,除1种有机质浓度较低的工业污泥(南京S22)中的Ag具有高浸出毒性风险以外,其余污泥浸出毒性风险均较小。人体健康风险评估结果表明,长三角地区污泥中的重金属Ag不会对成人和儿童产生显著的非致癌风险。综上,长三角地区除部分工业污泥外,市政和混流污泥的Ag环境风险均较小。

     

  • 图  1  不同污泥中的总Ag浓度

    Figure  1.  Total Ag concentration in different sludge

    图  2  污泥样品中含Ag颗粒的粒径分布

    Figure  2.  Size distribution of Ag-containing particles in sludge samples

    图  3  污泥中Ag的形态分布以及弱酸提取态Ag浓度

    Figure  3.  The percentages of chemical speciation of Ag in sludge and Ag concentrations in weak acid extraction state

    图  4  污泥中EDTA提取态Ag浓度与提取效率

    Figure  4.  Extractable concentrations and corresponding extraction ratios of Ag extracted by EDTA in sludge

    图  5  污泥浸出毒性溶液中的Ag浓度

    Figure  5.  Ag concentration in sludge leaching solution

    表  1  长三角地区污泥采样信息与性质

    Table  1.   Sampling information and properties of sludge in Yangtze River Delta region

    污泥类型样品编号污泥来源pHOM浓度/%CEC/
    〔cmol(+)/kg〕
    市政S1湖州6.66±0.0352.921.8
    S2镇江5.96±0.0741.255.5
    S3合肥6.03±0.0831.754.2
    S4合肥6.25±0.0634.559.3
    S5合肥6.24±0.0623.836.3
    S6淮安6.84±0.0625.337.4
    S7南通6.70±0.0429.743.6
    S8扬州7.25±0.0418.336.6
    S9苏州6.03±0.0436.249.7
    混流S10杭州10.30±0.0324.813.6
    S11无锡6.44±0.0338.643.7
    S12扬州6.05±0.0624.543.5
    S13扬州6.91±0.0724.342.3
    工业S14徐州8.06±0.0635.960.5
    S15扬州6.82±0.0737.450.9
    S16苏州7.20±0.0470.95.4
    S17南京1.43±0.0322.95.6
    S18苏州7.54±0.0311.611.8
    S19苏州7.83±0.047.434.1
    S20宁波8.47±0.077.715.0
    S21铜陵6.35±0.1319.335.7
    S22南京7.39±0.084.149.3
    下载: 导出CSV

    表  2  不同国家或地区污泥中Ag的浓度

    Table  2.   Ag concentrations in sewage sludge collected from different countries or regions

    国家或
    地区
    采集
    年份
    污泥
    类型
    Ag浓度 数据
    来源
    最小值 最大值 中位值 平均值
    我国 长三角
    地区
    2021 市政 0.08 4.34 0.52 0.99 本研究
    混流 0.50 4.83 1.11 1.89
    工业 0.66 721 6.27 101
    全国 2016 0.23 19.0 2.72 文献[28]

    全国
    2013 市政 0.64 7.47 2.80 文献[12]
    混流 1.06 9.31 4.05
    工业 4.81 9.92 7.07
    南非 2012 0.22 21.9 文献[30]
    捷克 0.02 3.10 1.30 文献[31]
    美国 2006—
    2007
    2.00 195 20.0 文献[32]
    下载: 导出CSV

    表  3  污泥样品中重金属Ag的日均暴露量

    Table  3.   Average daily exposure dose of Ag in sludge samples mg/(kg·d) 

    样品编号 CDIing CDIder CDIinh
    成人 儿童 成人 儿童 成人 儿童
    S1 2.32×10−9 1.49×10−8 8.72×10−12 4.25×10−11 2.47×10−19 4.11×10−19
    S2 8.02×10−9 5.16×10−8 3.02×10−11 1.47×10−10 8.55×10−19 1.42×10−18
    S3 1.08×10−8 6.98×10−8 4.08×10−11 1.99×10−10 1.16×10−18 1.92×10−18
    S4 1.23×10−8 7.95×10−8 4.64×10−11 2.26×10−10 1.32×10−18 2.19×10−18
    S5 1.45×10−8 9.35×10−8 5.46×10−11 2.66×10−10 1.55×10−18 2.58×10−18
    S6 1.75×10−8 1.13×10−7 6.60×10−11 3.22×10−10 1.87×10−18 3.11×10−18
    S7 3.08×10−8 1.98×10−7 1.16×10−10 5.65×10−10 3.29×10−18 5.47×10−18
    S8 3.11×10−8 2.00×10−7 1.17×10−10 5.70×10−10 3.31×10−18 5.52×10−18
    S9 1.21×10−7 7.80×10−7 4.56×10−10 2.22×10−9 1.29×10−17 2.15×10−17
    S10 1.39×10−8 8.97×10−8 5.24×10−11 2.56×10−10 1.49×10−18 2.47×10−18
    S11 2.74×10−8 1.76×10−7 1.03×10−10 5.02×10−10 2.92×10−18 4.86×10−18
    S12 3.46×10−8 2.23×10−7 1.30×10−10 6.34×10−10 3.69×10−18 6.14×10−18
    S13 1.35×10−7 8.69×10−7 5.08×10−10 2.48×10−9 1.44×10−17 2.40×10−17
    S14 1.84×10−8 1.18×10−7 6.92×10−11 3.37×10−10 1.96×10−18 3.27×10−18
    S15 3.94×10−8 2.54×10−7 1.48×10−10 7.22×10−10 4.20×10−18 6.99×10−18
    S16 6.11×10−8 3.93×10−7 2.30×10−10 1.12×10−9 6.51×10−18 1.08×10−17
    S17 7.40×10−8 4.76×10−7 2.78×10−10 1.36×10−9 7.89×10−18 1.31×10−17
    S18 1.75×10−7 1.13×10−6 6.59×10−10 3.21×10−9 1.87×10−17 3.11×10−17
    S19 9.14×10−7 5.88×10−6 3.44×10−9 1.67×10−8 9.74×10−17 1.62×10−16
    S20 1.44×10−6 9.26×10−6 5.41×10−9 2.64×10−8 1.53×10−16 2.55×10−16
    S21 2.43×10−6 1.57×10−5 9.15×10−9 4.46×10−8 2.59×10−16 4.32×10−16
    S22 2.01×10−5 1.30×10−4 7.58×10−8 3.69×10−7 2.15×10−15 3.57×10−15
    平均值 1.17×10−6 7.54×10−6 4.40×10−9 2.15×10−8 1.25×10−16 2.08×10−16
    下载: 导出CSV

    表  4  污泥中重金属Ag的非致癌健康风险指数

    Table  4.   Non-carcinogenic health risk index of Ag in sludge

    样品编号HIingHIderHIinhHI
    成人儿童成人儿童成人儿童成人儿童
    S14.64×10−72.98×10−61.74×10−98.50×10−94.94×10−178.23×10−174.65×10−72.99×10−6
    S21.60×10−61.03×10−56.03×10−92.94×10−81.71×10−162.85×10−161.61×10−61.03×10−5
    S32.17×10−61.40×10−58.15×10−93.97×10−82.31×10−163.85×10−162.18×10−61.40×10−5
    S42.47×10−61.59×10−59.29×10−94.53×10−82.63×10−164.38×10−162.48×10−61.59×10−5
    S52.90×10−61.87×10−51.09×10−85.33×10−83.10×10−165.16×10−162.92×10−61.88×10−5
    S63.51×10−62.26×10−51.32×10−86.43×10−83.74×10−166.23×10−163.52×10−62.26×10−5
    S76.17×10−63.97×10−52.32×10−81.13×10−86.57×10−161.09×10−156.19×10−63.98×10−5
    S86.22×10−64.00×10−52.34×10−81.14×10−76.63×10−161.10×10−156.24×10−64.01×10−5
    S92.42×10−51.56×10−49.12×10−84.44×10−72.58×10−154.30×10−152.43×10−51.56×10−4
    S102.79×10−61.79×10−51.05×10−85.11×10−82.97×10−164.95×10−162.80×10−61.80×10−5
    S115.48×10−63.53×10−52.06×10−81.00×10−75.84×10−169.73×10−165.50×10−63.54×10−5
    S126.92×10−64.45×10−52.60×10−81.27×10−77.37×10−161.23×10−156.94×10−64.46×10−5
    S132.70×10−61.74×10−41.02×10−74.95×10−72.88×10−154.79×10−152.71×10−51.74×10−4
    S143.68×10−62.37×10−51.38×10−86.75×10−83.92×10−166.53×10−163.69×10−62.38×10−5
    S157.88×10−65.07×10−52.96×10−81.44×10−78.40×10−161.40×10−157.91×10−65.08×10−5
    S161.22×10−57.86×10−54.59×10−82.24×10−71.30×10−152.17×10−151.23×10−57.88×10−5
    S171.48×10−59.53×10−55.57×10−82.71×10−71.58×10−152.63×10−151.49×10−59.56×10−5
    S183.50×10−52.25×10−41.32×10−76.42×10−73.73×10−156.22×10−153.51×10−52.26×10−4
    S191.83×10−41.18×10−36.87×10−73.35×10−61.95×10−143.24×10−141.83×10−41.18×10−3
    S202.88×10−41.85×10−31.08×10−65.27×10−63.07×10−145.11×10−142.89×10−41.86×10−3
    S214.87×10−43.13×10−31.83×10−68.92×10−65.19×10−148.64×10−144.88×10−43.14×10−3
    S224.03×10−32.59×10−21.52×10−57.38×10−54.29×10−137.15×10−134.04×10−32.60×10−2
    平均值2.34×10−41.51×10−38.81×10−74.29×10−62.50×10−144.16×10−142.35×10−41.51×10−3
    下载: 导出CSV
  • [1] PURCELL T W, PETERS J J. Sources of silver in the environment[J]. Environmental Toxicology and Chemistry,1998,17(4):539-546. doi: 10.1002/etc.5620170404
    [2] KLAINE S J, KOELMANS A A, HORNE N, et al. Paradigms to assess the environmental impact of manufactured nanomaterials[J]. Environmental Toxicology and Chemistry,2012,31(1):3-14. doi: 10.1002/etc.733
    [3] The Nanodatabase[DB/OL]. [2024-01-05]. http://nanodb.dk/en/search-database.
    [4] KAEGI R, VOEGELIN A, SINNET B, et al. Transformation of AgCl nanoparticles in a sewer system: a field study[J]. Science of the Total Environment,2015,535:20-27. doi: 10.1016/j.scitotenv.2014.12.075
    [5] CHOI O, DENG K K, KIM N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth[J]. Water Research,2008,42(12):3066-3074. doi: 10.1016/j.watres.2008.02.021
    [6] RATTE H T. Bioaccumulation and toxicity of silver compounds: a review[J]. Environmental Toxicology and Chemistry,1999,18(1):89-108. doi: 10.1002/etc.5620180112
    [7] YUAN Z H, YANG X Y, HU A Y, et al. Assessment of the fate of silver nanoparticles in the A2O-MBR system[J]. Science of the Total Environment,2016,544:901-907. doi: 10.1016/j.scitotenv.2015.11.158
    [8] GOTTSCHALK F, SONDERER T, SCHOLZ R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions[J]. Environmental Science & Technology,2009,43(24):9216-9222.
    [9] PRADAS del REAL A E, CASTILLO-MICHEL H, KAEGI R, et al. Fate of Ag-NPs in sewage sludge after application on agricultural soils[J]. Environmental Science & Technology,2016,50(4):1759-1768.
    [10] DOOLETTE C L, McLAUGHLIN M J, KIRBY J K, et al. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake[J]. Journal of Hazardous Materials,2015,300:788-795. doi: 10.1016/j.jhazmat.2015.08.012
    [11] JUDY J D, KIRBY J K, CREAMER C, et al. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil[J]. Environmental Pollution,2015,206:256-263. doi: 10.1016/j.envpol.2015.07.002
    [12] WU L H, YANG L, WANG Z Y, et al. Uptake of silver by brown rice and wheat in soils repeatedly amended with biosolids[J]. Science of the Total Environment,2018,612:94-102. doi: 10.1016/j.scitotenv.2017.08.183
    [13] LI M, LIU H L, DANG F, et al. Alteration of crop yield and quality of three vegetables upon exposure to silver nanoparticles in sludge-amended soil[J]. ACS Sustainable Chemistry & Engineering,2020,8(6):2472-2480.
    [14] GRÜN A L, STRASKRABA S, SCHULZ S, et al. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil[J]. Journal of Environmental Sciences (China),2018,69:12-22. doi: 10.1016/j.jes.2018.04.013
    [15] LI M, RUAN L Y, DANG F, et al. Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil[J]. Environmental Pollution,2022,300:118954. doi: 10.1016/j.envpol.2022.118954
    [16] LIU W Y, SHI H L, LIU K, et al. A sensitive single particle-ICP-MS method for CeO2 nanoparticles analysis in soil during aging process[J]. Journal of Agricultural and Food Chemistry,2021,69(3):1115-1122. doi: 10.1021/acs.jafc.0c06343
    [17] CAI W P, WANG Y J, FENG Y, et al. Extraction and quantification of nanoparticulate mercury in natural soils[J]. Environmental Science & Technology,2022,56(3):1763-1770.
    [18] SCHWERTFEGER D M, VELICOGNA J R, JESMER A H, et al. Extracting metallic nanoparticles from soils for quantitative analysis: method development using engineered silver nanoparticles and SP-ICP-MS[J]. Analytical Chemistry,2017,89(4):2505-2513. doi: 10.1021/acs.analchem.6b04668
    [19] TOU F Y, NIU Z S, FU J Q, et al. Simple method for the extraction and determination of Ti-, Zn-, Ag-, and Au-containing nanoparticles in sediments using single-particle inductively coupled plasma mass spectrometry[J]. Environmental Science & Technology,2021,55(15):10354-10364.
    [20] 刘甜田, 何滨, 王亚韩, 等. 改进BCR法在活性污泥样品重金属形态分析中的应用[J]. 分析试验室,2007,26(增刊1):17-20. doi: 10.3969/j.issn.1000-0720.2007.z1.006
    [21] CHEN C X, LU Y H, HONG J Q, et al. Metal and metalloid contaminant availability in Yundang Lagoon sediments, Xiamen Bay, China, after 20 years continuous rehabilitation[J]. Journal of Hazardous Materials,2010,175(1/2/3):1048-1055.
    [22] QUEVAUVILLER P, RAURET G, RUBIO R, et al. Certified reference materials for the quality control of EDTA- and acetic acid-extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484)[J]. Fresenius' Journal of Analytical Chemistry,1997,357(6):611-618. doi: 10.1007/s002160050222
    [23] US EPA. Risk-assessment guidance for Superfund. Volume 1: human health evaluation manual. Part A: interim report (final)[R]. Washington DC: US EPA, 1989.
    [24] 张宏泽, 崔文刚, 黄月美, 等. 黔中喀斯特地区临近矿区耕地土壤重金属污染评价及其源解析[J]. 环境科学学报,2022,42(4):412-421.

    ZHANG H Z, CUI W G, HUANG Y M, et al. Evaluation and source analysis of heavy metal pollution of farmland soil around the mining area of Karst Region of central Guizhou Province[J]. Acta Scientiae Circumstantiae,2022,42(4):412-421.
    [25] 张利瑞, 彭鑫波, 马延龙, 等. 兰州市耕地“五毒” 重金属的风险评价与归因分析[J]. 环境科学,2022,43(9):4767-4778.

    ZHANG L R, PENG X B, MA Y L, et al. Risk assessment and attribution analysis of "five toxic" heavy metals in cultivated land in Lanzhou[J]. Environmental Science,2022,43(9):4767-4778.
    [26] US EPA. Reference dose (RfD): description and use in health risk assessments[R]. Washington DC: US EPA, 2004.
    [27] SHARMA B, SARKAR A, SINGH P, et al. Agricultural utilization of biosolids: a review on potential effects on soil and plant grown[J]. Waste Management,2017,64:117-132. doi: 10.1016/j.wasman.2017.03.002
    [28] CHEN Y, MAO Y X, SONG M Y, et al. Occurrence and leaching of silver in municipal sewage sludge in China[J]. Ecotoxicology and Environmental Safety,2020,189:109929. doi: 10.1016/j.ecoenv.2019.109929
    [29] ECKELMAN M J, GRAEDEL T E. Silver emissions and their environmental impacts: a multilevel assessment[J]. Environmental Science & Technology,2007,41(17):6283-6289.
    [30] SHAMUYARIRA K K, GUMBO J R. Assessment of heavy metals in municipal sewage sludge: a case study of Limpopo Province, South Africa[J]. International Journal of Environmental Research and Public Health,2014,11(3):2569-2579. doi: 10.3390/ijerph110302569
    [31] URBANOVÁ I, HUSÁKOVÁ L, ŠRÁMKOVÁ J. Direct electrothermal atomic spectrometric determination of Ag in aqua regia extracts of soils, sediments, and sewage sludge with matrix modification[J]. Environmental Monitoring and Assessment,2013,185(4):3327-3337. doi: 10.1007/s10661-012-2793-8
    [32] US EPA. Targeted national sewage sludge survey statistical analysis report[R]. Washington DC: US EPA, 2009.
    [33] KIM B, PARK C S, MURAYAMA M, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products[J]. Environmental Science & Technology,2010,44(19):7509-7514.
    [34] 支敏康, 张凯, 吕文丽. 不同粒径大气颗粒物中金属元素分布与风险评估研究进展[J]. 环境工程技术学报,2022,12(4):998-1006. doi: 10.12153/j.issn.1674-991X.20210324

    ZHI M K, ZHANG K, LÜ W L. A review of research advances in the distributions and risk assessments of metal elements in atmospheric particles with different particle sizes[J]. Journal of Environmental Engineering Technology,2022,12(4):998-1006. doi: 10.12153/j.issn.1674-991X.20210324
    [35] PANACEK A, KVÍTEK L, PRUCEK R, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity[J]. The Journal of Physical Chemistry B,2006,110(33):16248-16253. doi: 10.1021/jp063826h
    [36] PAL S, TAK Y K, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle: a study of the Gram-negative bacterium Escherichia coli[J]. Applied and Environmental Microbiology,2007,73(6):1712-1720. doi: 10.1128/AEM.02218-06
    [37] YANG Y, QUENSEN J, MATHIEU J, et al. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge[J]. Water Research,2014,48:317-325. doi: 10.1016/j.watres.2013.09.046
    [38] WANG P, MENZIES N W, LOMBI E, et al. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic[J]. Nanotoxicology,2015,9(8):1041-1049. doi: 10.3109/17435390.2014.999139
    [39] LI M, DANG F, FU Q L, et al. Effects of molecular weight-fractionated natural organic matter on the phytoavailability of silver nanoparticles[J]. Environmental Science: Nano,2018,5(4):969-979. doi: 10.1039/C7EN01173C
    [40] 郭鹏然, 雷永乾, 蔡大川, 等. 广州城市污泥中重金属形态特征及其生态风险评价[J]. 环境科学,2014,35(2):684-691.

    GUO P R, LEI Y Q, CAI D C, et al. Characteristics of speciation and evaluation of ecological risk of heavy metals in sewage sludge of Guangzhou[J]. Environmental Science,2014,35(2):684-691.
    [41] LIU H L, ZHOU J, LI M, et al. Dynamic behaviors of newly deposited atmospheric heavy metals in the soil-pak choi system[J]. Environmental Science & Technology,2022,56(17):12734-12744.
    [42] LIU H L, LI M, ZHOU J, et al. Effects of soil properties and aging process on the acute toxicity of cadmium to earthworm Eisenia fetida[J]. Environmental Science and Pollution Research International,2018,25(4):3708-3717. doi: 10.1007/s11356-017-0739-y
    [43] FANG W, WEI Y H, LIU J G. Comparative characterization of sewage sludge compost and soil: heavy metal leaching characteristics[J]. Journal of Hazardous Materials,2016,310:1-10. doi: 10.1016/j.jhazmat.2016.02.025
    [44] WANG C, HU X, CHEN M L, et al. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants[J]. Journal of Hazardous Materials,2005,119(1/2/3):245-249.
    [45] MERRINGTON G, OLIVER I, SMERNIK R J, et al. The influence of sewage sludge properties on sludge-borne metal availability[J]. Advances in Environmental Research,2003,8(1):21-36. doi: 10.1016/S1093-0191(02)00139-9
    [46] HIRSCH M P. Availability of sludge-borne silver to agricultural crops[J]. Environmental Toxicology and Chemistry,1998,17(4):610-616.
    [47] GRÜN A L, EMMERLING C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on major soil bacterial phyla of a loamy soil[J]. Environmental Sciences Europe,2018,30(1):31. doi: 10.1186/s12302-018-0160-2
    [48] 张绪勇, 吴汉福, 邓红江, 等. 六盘水污水处理厂污泥中重金属生态风险评价[J]. 广州化工,2016,44(23):117-119. doi: 10.3969/j.issn.1001-9677.2016.23.042

    ZHANG X Y, WU H F, DENG H J, et al. Ecological risk assessment of heavy metalsin sewage sludge of Liupanshui sewage treatment plant[J]. Guangzhou Chemical Industry,2016,44(23):117-119. doi: 10.3969/j.issn.1001-9677.2016.23.042
    [49] HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model[J]. Journal of Hazardous Materials,2021,415:125629. doi: 10.1016/j.jhazmat.2021.125629
    [50] ZHU X, LI M Y, CHEN X Q, et al. As, Cd, and Pb relative bioavailability in contaminated soils: coupling mouse bioassay with UBM assay[J]. Environment International,2019,130:104875. doi: 10.1016/j.envint.2019.05.069
    [51] LI J, LI K, CUI X Y, et al. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: method comparison and method development[J]. Science of the Total Environment,2015,532:812-820. doi: 10.1016/j.scitotenv.2015.05.113
    [52] LIU H L, ZHOU J, LI M, et al. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system[J]. Journal of Hazardous Materials,2019,362:9-16. □ doi: 10.1016/j.jhazmat.2018.09.032
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  51
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 录用日期:  2024-04-01
  • 修回日期:  2024-01-24

目录

    /

    返回文章
    返回