Preparation and performance of artificial wetland phosphorus removal filter media based on construction wastes
-
摘要:
高效、高容量的吸附滤料是提高人工湿地除磷效率的重要手段。以建筑废物(废混凝土和废泡沫砖)为主要原料制备多孔除磷滤料,采用X射线衍射和扫描电子显微镜对滤料主要化学组分和形貌特征进行表征,利用吸附动力学和吸附等温线试验、静态对比试验和动态试验评估了滤料对水中磷的吸附性能。结果表明:该滤料比表面积大、孔隙发达,内部微观结构为片层孔隙结构,比表面积为22.7 m2/g;其吸附过程满足拟二级吸附动力学模型和Langmuir吸附等温模型,吸附机理以单分子层物理和化学复合吸附为主,最大吸附容量达到693.21 mg/g。在总磷浓度为0.4 mg/L的静态吸附试验中,多孔滤料在4 h内对磷的平均去除率为65.38%,分别是废混凝土、废泡沫砖、陶粒、硅藻土和活性炭的4.10、1.98、3.52、2.29和1.59倍。在模拟水平流潜流湿地动态试验中,在进水总磷浓度为0.40 mg/L,水力负荷为0.48、0.96、1.20、2.40 m3/(m2·d)的条件下,多孔滤料对总磷的平均去除率分别为95.74%、93.56%、80.42%、55.34%;在水力负荷为0.96 m3/(m2·d)、进水平均总磷浓度为0.52 mg/L、连续进水45 d条件下,多孔滤料对总磷的平均去除率为92.65%。该滤料制备方法简单,除磷性能优异,还实现了对建筑废物的有效利用,作为人工湿地填料具有应用潜力。
Abstract:Efficient and high-capacity adsorption materials are crucial for improving the phosphorus removal efficiency of constructed wetlands. This study focuses on preparing porous phosphorus removal filter media using construction wastes (mainly waste concrete and waste foam bricks) as the main raw materials. The filter material was characterized for their main chemical composition and morphological features using X-ray diffraction and scanning electron microscope. The adsorption performance of the filter material for phosphorus in water was evaluated through adsorption kinetics and adsorption isotherm experiments, static comparative experiments, and dynamic experiments. The results showed that the material had a large specific surface area and well-developed pore structure, featuring a layered pore structure of internal microstructure with a specific surface area of 22.7 m2/g. The adsorption process fitted the pseudo-second-order adsorption kinetics model and Langmuir adsorption isotherm model, with the adsorption mechanism being primarily monolayer physical and chemical composite adsorption with a maximum adsorption capacity of 693.21 mg/g. In static adsorption experiments with a total phosphorus concentration of 0.4 mg/L, the average phosphorus removal rate of the porous material within 4 hours was 65.38%, which was 4.10, 1.98, 3.52, 2.29 and 1.59 times higher than that of waste concrete, waste foam bricks, ceramic granules, diatomaceous earth, and activated carbon, respectively. In dynamic experiments simulating horizontal subsurface flow wetlands with an influent total phosphorus concentration of 0.40 mg/L and hydraulic loads of 0.48, 0.96, 1.20, and 2.40 m3/(m2·d), the average phosphorus removal rates were 95.74%, 93.56%, 80.42% and 55.34%, respectively. Under a hydraulic load of 0.96 m3/(m2·d), an influent average phosphorus concentration of 0.52 mg/L, and continuous inflow for 45 days, the average phosphorus removal rate of the porous material was 92.65%. The filter material had the advantages of a simple preparation method, excellent phosphorus removal performance, effective utilization of construction waste, and application potential as constructed wetland filler.
-
Key words:
- construction waste /
- artificial wetland /
- phosphorus removal /
- porous filter material
-
表 1 不同滤料的物理特性比较
Table 1. Comparison of physical characteristics of different filter materials
表 2 多孔滤料吸附动力学拟合参数
Table 2. Fitting parameters for adsorption kinetics of porous filter material
拟一级动力学模型参数 拟二级动力学模型参数 K1/(min−1) R2 K2/〔g/(mg·min)〕 R2 0.078 0.886 0.042 0.994 表 3 多孔滤料吸附等温线拟合参数
Table 3. Fitting parameters for adsorption isotherms of porous filter material
Langmuir模型参数 Freundlich模型参数 $ {{q}}_{\mathbf{m}}/ $(mg/g) $ {{K}}_{\mathbf{L}} $/(L/mg) R2 $ {{K}}_{\mathbf{F}} $/(L/mg) 1/n R2 693.21 0.0037 0.991 15.431 0.370 0.884 表 4 不同水力负荷下多孔滤料对总磷的去除率
Table 4. Removal rate of total phosphorus by porous filter material under different hydraulic loads
进水流速/
(mL/min)进水流量/
(m3/d)水力负荷/
〔m3/(m2·d)〕水力停留
时间/h总磷去除
率/%50 0.07 0.48 10 95.74 100 0.14 0.96 5 93.56 125 0.18 1.20 4 80.42 250 0.36 2.40 2 55.33 -
[1] WU D, EKAMA G A, WANG H G, et al. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process[J]. Water Research,2014,49:251-264. doi: 10.1016/j.watres.2013.11.029 [2] ZOU H M, WANG Y. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization[J]. Bioresource Technology,2016,211:87-92. doi: 10.1016/j.biortech.2016.03.073 [3] CORRELL D L. The role of phosphorus in the eutrophication of receiving waters: a review[J]. Journal of Environmental Quality,1998,27(2):261-266. [4] 李冬, 李悦, 李雨朦, 等. 好氧颗粒污泥同步硝化内源反硝化脱氮除磷[J]. 中国环境科学,2022,42(3):1113-1119. doi: 10.3969/j.issn.1000-6923.2022.03.015LI D, LI Y, LI Y M, et al. Simultaneous nitrification and denitrification of aerobic granular sludge for nitrogen and phosphorus removal[J]. China Environmental Science,2022,42(3):1113-1119. doi: 10.3969/j.issn.1000-6923.2022.03.015 [5] 车林轩, 程伟钊, 韦志鹏. 污水除磷技术及影响因素的研究进展[J]. 应用化工,2022,51(6):1811-1816. doi: 10.3969/j.issn.1671-3206.2022.06.053CHE L X, CHENG W Z, WEI Z P. The research and development of technologies for wastewater phosphorus removal and its influencing factors[J]. Applied Chemical Industry,2022,51(6):1811-1816. doi: 10.3969/j.issn.1671-3206.2022.06.053 [6] 孙梦, 张培玉, 张晨. 城市污水的除磷技术分析[J]. 水处理技术,2010,36(8):16-20.SUN M, ZHANG P Y, ZHANG C. Analysis of urban wastewater phosphorus removal technology[J]. Technology of Water Treatment,2010,36(8):16-20. [7] 唐朝春, 刘名, 陈惠民, 等. 吸附除磷技术的研究进展[J]. 水处理技术,2014,40(9):1-7.TANG C C, LIU M, CHEN H M, et al. Research progress of phosphorus removal from wastewater by adsorption technology[J]. Technology of Water Treatment,2014,40(9):1-7. [8] 王明铭, 魏俊, 黄荣敏, 等. 潜流人工湿地填料及其去除污染物机理研究进展[J]. 环境工程技术学报,2021,11(4):769-776.WANG M M, WEI J, HUANG R M, et al. Research progress of subsurface flow constructed wetland filler and its pollutant removal mechanism[J]. Journal of Environmental Engineering Technology,2021,11(4):769-776. [9] 赵艳锋, 苏鑫, 张文华, 等. 改性硅藻土吸附处理含磷废水的研究[J]. 应用化工,2018,47(5):883-886. doi: 10.3969/j.issn.1671-3206.2018.05.009ZHAO Y F, SU X, ZHANG W H, et al. Study on phosphorus wastewater adsorption on modified diatomite[J]. Applied Chemical Industry,2018,47(5):883-886. doi: 10.3969/j.issn.1671-3206.2018.05.009 [10] 武越, 赵婷, 金彦任, 等. 改性无烟煤材料的制备及其对磷的吸附回收性能[J]. 环境工程技术学报,2022,12(5):1653-1659. doi: 10.12153/j.issn.1674-991X.20210349WU Y, ZHAO T, JIN Y R, et al. Preparation of modified anthracites and research on their adsorption and recovery performance on phosphorus[J]. Journal of Environmental Engineering Technology,2022,12(5):1653-1659. doi: 10.12153/j.issn.1674-991X.20210349 [11] 王诗慧, 刘鹰, 李双, 等. 载铁活性炭对水中低浓度磷酸盐的吸附去除效果[J]. 大连海洋大学学报,2022,37(2):276-284.WANG S H, LIU Y, LI S, et al. Effects of iron-loaded activated carbon on adsorption and removal of low concentration phosphate in water[J]. Journal of Dalian Ocean University,2022,37(2):276-284. [12] 肖其亮, 熊丽萍, 彭华, 等. 不同基质组合对氮磷吸附能力的研究[J]. 环境科学研究,2022,35(5):1277-1287.XIAO Q L, XIONG L P, PENG H, et al. Nitrogen and phosphorus adsorption capacity of different substrate combinations[J]. Research of Environmental Sciences,2022,35(5):1277-1287. [13] 易皓, 余仪, 柳泽伟, 等. Ni-MOFs对水中全氟烷基醚磺酸盐的吸附性能及机理[J]. 环境工程学报,2023,17(9):2861-2871. doi: 10.12030/j.cjee.202304088YI H, YU Y, LIU Z W, et al. Adsorption performance and mechanisms of Ni-MOFs towards chlorinated polyfluoroalkyl ether sulfonic acid in aqueous phase[J]. Chinese Journal of Environmental Engineering,2023,17(9):2861-2871. doi: 10.12030/j.cjee.202304088 [14] 张挺, 王云飞, 杜欢政. 建筑废弃物资源化产业现状及对策建议[J]. 城市管理与科技,2021,23(3):55-57.ZHANG T, WANG Y F, DU H Z. Present situation and countermeasures of construction & demolition waste recycling industry[J]. Urban Management and Science & Technology,2021,23(3):55-57. [15] MYMRIN V, HACKBART F M, ALEKSEEV K, et al. Construction materials wastes use to neutralize hazardous municipal water treatment sludge[J]. Construction and Building Materials,2019,204:800-808. doi: 10.1016/j.conbuildmat.2019.01.182 [16] GOMES H I, MAYES W M, ROGERSON M, et al. Alkaline residues and the environment: a review of impacts, management practices and opportunities[J]. Journal of Cleaner Production,2016,112:3571-3582. doi: 10.1016/j.jclepro.2015.09.111 [17] 何强, 何璇, 洪毅怡晖, 等. 铁盐辅助生物除磷工艺研究进展[J]. 土木与环境工程学报(中英文),2022(1):160-167.HE Q, HE X, HONG Y, et al. A review of ferric salt dependent phosphorus removal in wastewater[J]. Journal of Civil and Environmental Engineering,2022(1):160-167. [18] 毕若彤, 李魁晓, 王刚, 等. 化学除磷药剂对生物除磷的影响研究进展[J]. 应用化工,2022,51(11):3319-3322.BI R T, LI K X, WANG G, et al. Research progress of the impacts of chemical phosphorus removal reagents on biological phosphorus removal[J]. Applied Chemical Industry,2022,51(11):3319-3322. [19] 何锋, 陈坤阳, 段华波, 等. 建筑拆除废弃物处置碳排放强度与减排潜力[J]. 建筑科技,2022,6(5):16-20. doi: 10.3969/j.issn.1007-046X.2022.05.006HE F, CHEN K Y, DUAN H B, et al. Carbon emission intensity and its reduction potential of waste disposal generated from building demolition[J]. Building Technology,2022,6(5):16-20. doi: 10.3969/j.issn.1007-046X.2022.05.006 [20] 王振, 刘超翔, 董健, 等. 人工湿地中除磷填料的筛选及其除磷能力[J]. 中国环境科学,2013,33(2):227-233. doi: 10.3969/j.issn.1000-6923.2013.02.006WANG Z, LIU C X, DONG J, et al. Screening of phosphate-removing filter media for use in constructed wetlands and their phosphorus removal capacities[J]. China Environmental Science,2013,33(2):227-233. doi: 10.3969/j.issn.1000-6923.2013.02.006 [21] 茆永峰, 惠振龙, 路博华, 等. 典型建筑废弃物对磷的吸附特征及其在复合垂直潜流人工湿地中的应用研究[J]. 水处理技术,2014,40(11):83-87.MAO Y F, HUI Z L, LU B H, et al. Characteristics of phosphorus adsorption on typical construction solid waste and its application on multi-stage vertical subsurface flow constructed wetland system[J]. Technology of Water Treatment,2014,40(11):83-87. [22] 方芳, 龙腾锐, 郭劲松, 等. 多孔填料表面物理特性对生物膜附着的影响[J]. 工业用水与废水,2004,35(6):1-4. doi: 10.3969/j.issn.1009-2455.2004.06.001FANG F, LONG T R, GUO J S, et al. Effects of surface physical characteristics of protruded packing on biofilm attachment[J]. Industrial Water & Wastewater,2004,35(6):1-4. doi: 10.3969/j.issn.1009-2455.2004.06.001 [23] TOSHIMA T, HAMAI R, TAFU M, et al. Morphology control of brushite prepared by aqueous solution synthesis[J]. Journal of Asian Ceramic Societies,2014,2(1):52-56. doi: 10.1016/j.jascer.2014.01.004 [24] 顾纬键. 共磨零价铁和碳酸钙对多种污染物同步高效去除的研究[D]. 武汉: 武汉理工大学, 2020. [25] 丁娜娜, 梁锦华, 乌兰, 等. 生物质炭的制备及其在吸附中的应用[J]. 分析测试技术与仪器,2022,28(4):363-374.DING N N, LIANG J H, WU L, et al. Preparation of biochars and its applications in adsorption[J]. Analysis and Testing Technology and Instruments,2022,28(4):363-374. [26] 徐建玲, 张頔, 聂苗青, 等. PEI功能化秸秆生物炭对水中Cr6+的吸附性能[J]. 高等学校化学学报,2020,41(1):155-161. doi: 10.7503/cjcu20190418XU J L, ZHANG D, NIE M Q, et al. Adsorption of Cr6+ on polyethyleneimine-functionalized straw biochar from aqueous solution[J]. Chemical Journal of Chinese Universities,2020,41(1):155-161. doi: 10.7503/cjcu20190418 [27] TENG H, HSIEH C T. Activation energy for oxygen chemisorption on carbon at low temperatures[J]. Industrial & Engineering Chemistry Research,1999,38(1):292-297. [28] WANG X Y, SHI C, HAO X D, et al. Phosphate recovery from sludge-incinerated ash by adsorption with hydrotalcite synthesized by metals in the ash[J]. Science of the Total Environment,2023,905:167263. doi: 10.1016/j.scitotenv.2023.167263 [29] 谢发之, 汪雪春, 杨佩佩, 等. 纯相钙铝层状双氢氧化物对磷的吸附特性[J]. 应用化学,2016,33(4):473-480. doi: 10.11944/j.issn.1000-0518.2016.04.150265XIE F Z, WANG X C, YANG P P, et al. Pure Ca-Al-layered double hydroxides as an efficient sorbent for phosphate[J]. Chinese Journal of Applied Chemistry,2016,33(4):473-480. ◇ doi: 10.11944/j.issn.1000-0518.2016.04.150265