Effects of flooding conditions and vegetation types on the microbial community characteristics and the abundance of denitrification functional genes in the ecotone of Lake Erhai
-
摘要:
为探究淹水条件与植被类型对湖滨带微生物群落结构、脱氮功能基因的影响,以洱海湖滨带3种淹水条件(不淹水、间歇淹水、持续淹水)和6种植被类型(草地、林地、林草地、挺水、沉水、无植被)土壤/底泥中的微生物为研究对象,采用16S rRNA基因高通量测序和荧光定量PCR技术,分析淹水条件和植被类型对洱海湖滨带土壤和底泥微生物群落结构以及微生物脱氮功能基因丰度的影响。结果表明:交界区作为湖滨带物质交换与能量流动最频繁的区域,受水位波动影响环境条件复杂,其土壤/底泥中氮循环的重要微生物类群(如绿弯菌门和硝化螺旋菌门等)的相对丰度及α多样性均高于陆向区和水向区;而植被类型主要影响水向区底泥的微生物群落组成和α多样性。微生物脱氮功能基因丰度的差异进一步说明湖滨带脱氮微生物的空间分布特点,陆向区和交界区更高的功能基因丰度说明微生物脱氮活动更强烈。含水率、碳氮比、有机碳和亚硝氮是洱海湖滨带土壤/底泥脱氮过程功能基因丰度的关键影响因素,其浓度变化是淹水条件和植被类型影响脱氮功能基因丰度差异的主要原因。
Abstract:In order to investigate the effects of flooding conditions and vegetation types on the microbial community structure and denitrification function genes of the ecotone zone of Lake Erhai, the microorganisms present in the soil and sediment of the ecotone zone of Lake Erhai were investigated under three flooding scenarios (no-flooding area, intermittent inundation area, constant inundation area) and with six different types of vegetation cover (grassland, woodland, forest-grassland, emergent vegetation, submerged vegetation, and no vegetation). The investigation was conducted using the 16S rRNA gene high-throughput sequencing and fluorescence quantitative PCR technologies to determine changes in microbial community structure and functional gene abundance and the impact of flooding and vegetation cover on soil and sediment microbial communities in the ecotone zone of Lake Erhai. The results showed that as the area with the most frequent material exchange and energy flow in the lakeshore, the interface zone was affected by water level fluctuations, so it became a complex environmental condition. The relative abundance of important microbial groups in nitrogen cycling in this soil/sediment, such as Chloroflexi and Nitrospirota, was higher than in the land and water zone. The vegetation cover mainly affected the microbial community composition and α Diversity in the sediment in the water land. The difference in the abundance of microbial denitrification functional genes revealed the spatial distribution characteristics of denitrification microorganisms in the ecotone zone. A higher abundance of functional genes in landward and interface zones indicated a stronger microbial denitrification activity. The abundance of functional genes during the removal of nitrogen from soil or sediment in the lakeshore of Lake Erhai was affected by several key factors, including water content, carbon-to-nitrogen ratio, organic carbon, and nitrite nitrogen. The difference in the concentration of these factors was the primary cause of the variation in the abundance of functional genes for nitrogen removal under various flooding conditions and vegetation cover.
-
Key words:
- ecotone zone /
- flooding condition /
- vegetation type /
- microorganism /
- community structure
-
表 1 定量PCR分析目的基因引物
Table 1. Primers of target genes used in quantitative PCR analysis
目标基因 引物名称 引物序列 AOA
amoAArch-amoAF STAATGGTCTGGCTTAGACG Arch-amoAR GCGGCCATCCATCTGTATGT AOB
amoAamo598f GAATATGTTCGCCTGATTG amo718r CAAAGTACCACCATACGCAG narG narG1960m2f TA(CT)GT(GC)GGGCAGGA(AG)AAACTG narG2050m2r CGTAGAAGAAGCTGGTGCTGTT napA napAV17m TGGACVATGGGYTTYAAYC napA4r ACYTCRCGHGCVGTRCCRCA nirK nirK876 ATYGGCGGVAYGGCGA nirK1040 GCCTCGATCAGRTTRTGGTT nirS nirSCd3aF AACGYSAAGGARACSGG nirSR3cd GASTTCGGRTGSGTCTTSAYGAA nosZ nosZ1527F CGCTGTTCHTCGACAGYCA nosZ1773R ATRTCGATCARCTGBTCGTT amx
16S rRNAamx809F GCCGTAAACGATGGGCACT amx1066R AACGTCTCACGACACGAGCTG 表 2 不同区域微生物群落不相似性检验
Table 2. Dissimilarity test of microorganism communities in different zones
对比样地 ADONIS ANOSIM R2 P R P 陆向区×交界区×水向区 0.242 0.001 0.784 0.001 草地×林地(陆向区) 0.153 0.283 0.115 0.241 草地×林草地(交界区) 0.095 0.093 0.228 0.925 挺水×沉水×无植被(水向区) 0.190 0.001 0.447 0.001 注:“×”表示不同淹水条件或植被类型的样地对比。 -
[1] 颜昌宙, 金相灿, 赵景柱, 等. 湖滨带退化生态系统的恢复与重建[J]. 应用生态学报,2005,16(2):360-364. doi: 10.3321/j.issn:1001-9332.2005.02.033YAN C Z, JIN X C, ZHAO J Z, et al. Ecological restoration and reconstruction of degraded lakeside zone ecosystem[J]. Chinese Journal of Applied Ecology,2005,16(2):360-364. doi: 10.3321/j.issn:1001-9332.2005.02.033 [2] 江和龙, 王昌辉, 白雷雷, 等. 湖泊环境科学与工程技术研究进展探讨[J]. 湖泊科学,2020,32(5):1278-1296. doi: 10.18307/2020.0507JIANG H L, WANG C H, BAI L L, et al. Advances and prospects in lake environment science and engineering: a review[J]. Journal of Lake Sciences,2020,32(5):1278-1296. doi: 10.18307/2020.0507 [3] 李姗泽, 王雨春, 张家晖, 等. 三峡消落带土壤—植物—微生物作用下的氮循环关键过程研究进展[J]. 湖泊科学,2023,35(2):398-410. doi: 10.18307/2023.0203LI S Z, WANG Y C, ZHANG J H, et al. Research progress on key processes of nitrogen cycling under soil-plant-microbial inter-actions in the water-level-fluctuation zone of the Three Gorges Reservoir[J]. Journal of Lake Sciences,2023,35(2):398-410. doi: 10.18307/2023.0203 [4] GLEESON D B, MÜLLER C, BANERJEE S, et al. Response of ammonia oxidizing Archaea and bacteria to changing water filled pore space[J]. Soil Biology and Biochemistry,2010,42(10):1888-1891. doi: 10.1016/j.soilbio.2010.06.020 [5] WEISNER S E B, THIERE G. Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: a test of the biodiversity–ecosystem functioning hypothesis[J]. Freshwater Biology,2010,55(2):387-396. doi: 10.1111/j.1365-2427.2009.02288.x [6] EDWARDS K R, PICEK T, ČÍŽKOVÁ H, et al. Nutrient addition effects on carbon fluxes in wet grasslands with either organic or mineral soil[J]. Wetlands,2015,35(1):55-68. doi: 10.1007/s13157-014-0592-4 [7] DRENOVSKY R E, STEENWERTH K L, JACKSON L E, et al. Land use and climatic factors structure regional patterns in soil microbial communities[J]. Global Ecology and Biogeography: a Journal of Macroecology,2010,19(1):27-39. doi: 10.1111/j.1466-8238.2009.00486.x [8] MURTY D, KIRSCHBAUM M U F, MCMURTRIE R E, et al. Does conversion of forest to agricultural land change soil carbon and nitrogen: a review of the literature[J]. Global Change Biology,2002,8(2):105-123. doi: 10.1046/j.1354-1013.2001.00459.x [9] GUO X P, CHEN H Y H, MENG M J, et al. Effects of land use change on the composition of soil microbial communities in a managed subtropical forest[J]. Forest Ecology and Management,2016,373:93-99. doi: 10.1016/j.foreco.2016.03.048 [10] DING L L, ZHOU J Y, LI Q Y, et al. Effects of land-use type and flooding on the soil microbial community and functional genes in reservoir riparian zones[J]. Microbial Ecology,2022,83(2):393-407. doi: 10.1007/s00248-021-01746-3 [11] WANG S Y, PI Y X, SONG Y P, et al. Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones[J]. Water Research,2020,173:115539. doi: 10.1016/j.watres.2020.115539 [12] ZHU G B, WANG S Y, WANG W D, et al. Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces[J]. Nature Geoscience,2013,6:103-107. doi: 10.1038/ngeo1683 [13] ZHAO S Y, WANG Q, ZHOU J M, et al. Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone[J]. Science of the Total Environment,2018,642:1090-1099. doi: 10.1016/j.scitotenv.2018.06.110 [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [15] ZHANG Y, JI G D, WANG C, et al. Importance of denitrification driven by the relative abundances of microbial communities in coastal wetlands[J]. Environmental Pollution,2019,244:47-54. doi: 10.1016/j.envpol.2018.10.016 [16] 祝贵兵. 陆地和淡水生态系统新型微生物氮循环研究进展[J]. 微生物学报,2020,60(9):1972-1984.ZHU G B. Novel nitrogen cycles in terrestrial and freshwater ecosystems[J]. Acta Microbiologica Sinica,2020,60(9):1972-1984. [17] 郭劲松, 黄轩民, 张彬, 等. 三峡库区消落带土壤有机质和全氮含量分布特征[J]. 湖泊科学,2012,24(2):213-219. doi: 10.3969/j.issn.1003-5427.2012.02.007GUO J S, HUANG X M, ZHANG B, et al. Distribution characteristics of organic matter and total nitrogen in the soils of water-level-fluctuating zone of Three Gorges Reservoir Area[J]. Journal of Lake Sciences,2012,24(2):213-219. doi: 10.3969/j.issn.1003-5427.2012.02.007 [18] VIPARELLI E, NITTROUER J A, PARKER G. Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition: implications for land building using engineered diversions[J]. Journal of Geophysical Research: Earth Surface,2015,120(3):534-563. doi: 10.1002/2014JF003257 [19] 高景峰, 彭永臻, 王淑莹. SBR法去除有机物、硝化和反硝化过程中pH变化规律[J]. 环境工程,2001,19(5):21-24. doi: 10.3969/j.issn.1000-8942.2001.05.006GAO J F, PENG Y Z, WANG S Y. Law of changes in pH during processes of nitrification, denitrification and organism removal by SBR[J]. Environmental Engineering,2001,19(5):21-24. doi: 10.3969/j.issn.1000-8942.2001.05.006 [20] 于珍珍, 王宏轩, 邹华芬, 等. 加气灌溉下红壤土呼吸速率变化及其与土壤水氧的关系[J]. 热带作物学报,2022,43(1):110-118. doi: 10.3969/j.issn.1000-2561.2022.01.015YU Z Z, WANG H X, ZOU H F, et al. Changes of red soil respiration rate under aerated irrigation and its relationship with soil water and oxygen[J]. Chinese Journal of Tropical Crops,2022,43(1):110-118. doi: 10.3969/j.issn.1000-2561.2022.01.015 [21] 曾晓敏, 范跃新, 林开淼, 等. 亚热带不同植被类型土壤磷组分特征及其影响因素[J]. 应用生态学报,2018,29(7):2156-2162.ZENG X M, FAN Y X, LIN K M, et al. Characteristics of soil phosphorus fractions of different vegetation types in subtropical forests and their driving factors[J]. Chinese Journal of Applied Ecology,2018,29(7):2156-2162. [22] 彭方成, 汤安民, 边华林, 等. 不同水位梯度和植被类型对洞庭湖湿地土壤有机碳储量的影响[J]. 湿地科学,2023,21(6):868-875.PENG F C, TANG A M, BIAN H L, et al. Influences of different water level gradients and vegetation types on soil organic carbon storage in the Dongting Lake wetland[J]. Wetland Science,2023,21(6):868-875. [23] 杨文航, 秦红, 任庆水, 等. 三峡库区消落带重建植被下土壤微生物生物量碳氮含量特征[J]. 生态学报,2017,37(23):7947-7955.YANG W H, QIN H, REN Q S, et al. Characteristics of soil microbial biomass C and N under revegetation in the hydro-fluctuation belt of the Three Gorges Reservoir Region[J]. Acta Ecologica Sinica,2017,37(23):7947-7955. [24] YANG F, ZHANG D D, WU J J, et al. Anti-seasonal submergence dominates the structure and composition of prokaryotic communities in the riparian zone of the Three Gorges Reservoir, China[J]. Science of the Total Environment,2019,663:662-672. doi: 10.1016/j.scitotenv.2019.01.357 [25] ZHANG H J, SUN L W, LI Y, et al. The bacterial community structure and N-cycling gene abundance in response to dam construction in a riparian zone[J]. Environmental Research,2021,194:110717. doi: 10.1016/j.envres.2021.110717 [26] YIN Y C, YAN Z Z. Variations of soil bacterial diversity and metabolic function with tidal flat elevation gradient in an artificial mangrove wetland[J]. Science of the Total Environment,2020,718:137385. doi: 10.1016/j.scitotenv.2020.137385 [27] BROCKETT B F T, PRESCOTT C E, GRAYSTON S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry,2012,44(1):9-20. doi: 10.1016/j.soilbio.2011.09.003 [28] 刘银银. 洞庭湖典型湿地植被土壤微生物特征及多样性变化规律[D]. 合肥: 安徽大学, 2013. [29] ZHENG F C, ZHANG T G, YIN S L, et al. Comparison and interpretation of freshwater bacterial structure and interactions with organic to nutrient imbalances in restored wetlands[J]. Frontiers in Microbiology,2022,13:946537. doi: 10.3389/fmicb.2022.946537 [30] 赵欣艳. 洱海湖滨植被带中细菌及脱氮微生物的分布特征[D]. 西安: 西安建筑科技大学, 2017. [31] LAMERS L P M, van DIGGELEN J M H, OP den CAMP H J, et al. Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review[J]. Frontiers in Microbiology,2012,3:156. [32] YE F, MA M H, OP den CAMP H J M, et al. Different recovery processes of soil ammonia oxidizers from flooding disturbance[J]. Microbial Ecology,2018,76(4):1041-1052. doi: 10.1007/s00248-018-1183-3 [33] LIU J M, CAO W W, JIANG H M, et al. Impact of heavy metal pollution on ammonia oxidizers in soils in the vicinity of a tailings dam, Baotou, China[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(1):110-116. doi: 10.1007/s00128-018-2345-1 [34] 安丽荣, 卞文新, 刘宝华, 等. 环境胁迫对氨氧化菌群的影响研究进展[J]. 应用与环境生物学报,2021,27(3):808-815.AN L R, BIAN W X, LIU B H, et al. Advances in the effects of environmental stress on ammonia-oxidizing communities[J]. Chinese Journal of Applied and Environmental Biology,2021,27(3):808-815. [35] FENG W W, LIU J F, GU J D, et al. Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA)[J]. International Biodeterioration & Biodegradation,2011,65(7):1081-1086. [36] PASTORELLI R, PICCOLO R, SIMONCINI S, et al. New primers for denaturing gradient gel electrophoresis analysis of nitrate-reducing bacterial community in soil[J]. Pedosphere,2013,23(3):340-349. doi: 10.1016/S1002-0160(13)60025-9 [37] GAO Y F, WANG M M, WEI J, et al. Enhanced sediment denitrification for nitrogen removal by manipulating water level in the lakeshore zone[J]. Water,2021,13(23):3323. doi: 10.3390/w13233323 [38] XIONG Z Q, GUO L D, ZHANG Q F, et al. Edaphic conditions regulate denitrification directly and indirectly by altering denitrifier abundance in wetlands along the Han River, China[J]. Environmental Science & Technology,2017,51(10):5483-5491. [39] 朱砚涛, 苏培兴, 张代钧, 等. 三峡水库消落带土壤反硝化特征以及溶解性有机质的影响[J]. 中国环境科学, 2024. [40] 韩雪恪, 王峥嵘, 彭永臻, 等. 几种重要因素对厌氧氨氧化过程的影响综述[J]. 中国环境科学,2023,43(5):2220-2227. doi: 10.3969/j.issn.1000-6923.2023.05.013HAN X K, WANG Z R, PENG Y Z, et al. A review of several important factors influencing the Anammox process[J]. China Environmental Science,2023,43(5):2220-2227. doi: 10.3969/j.issn.1000-6923.2023.05.013 [41] 刘兰, 明语真, 吕爱萍, 等. 厌氧氨氧化细菌的研究进展[J]. 微生物学报,2021,61(4):969-986.LIU L, MING Y Z, LÜ A P, et al. Recent advance on the anaerobic ammonium oxidation bacteria[J]. Acta Microbiologica Sinica,2021,61(4):969-986. [42] 刘小宁. 桂林会仙湿地中基于厌氧氨氧化过程的氮元素迁移转化研究[D]. 桂林: 桂林理工大学, 2021. ⊕