Efficiency of ozone micro nano bubbles in treating concentrated brine in zero discharge process of coking wastewater
-
摘要:
焦化废水的零排放工艺中使用蒸汽机械再压缩(MVR)蒸发结晶处理膜浓缩液,最终产生超高盐浓缩液废水,其难以通过传统氧化方法进行处理。臭氧微纳米气泡技术能够提高臭氧传质效率、增强臭氧氧化能力,可望用于处理MVR浓缩母液。为验证该技术的工程应用可行性,以MVR浓缩母液为研究对象,对比臭氧微纳米气泡和普通大气泡2种曝气方式下臭氧传质速率以及有机物的降解效能,从技术、经济角度分析盐浓度和有机物浓度对2种臭氧氧化工艺处理效果的影响,以界定臭氧微纳米气泡技术处理高盐废水的适用范围。结果表明:随着盐浓度从0.1 mol/L增加至1 mol/L,微纳米气泡和普通大气泡的臭氧传质系数分别提高0.13和0.09倍,臭氧自分解速率分别升高2.10和1.38倍。在处理高盐、高有机物废水(TOC浓度为57.2~587.6 mg/L,电导率为3.47~28.6 mS/cm)时,臭氧微纳米气泡较普通大气泡的TOC去除率提升0.50~3.76倍,吨水能耗最大可降低71%;处理超高盐、超高有机物废水(TOC浓度为5 626 mg/L,电导率为164.3 mS/cm)时,臭氧微纳米气泡去除效果与普通大气泡趋于一致且吨水能耗更高。高盐废水的盐浓度和有机物浓度对臭氧微纳米气泡处理效能影响显著,工程应用中应根据废水特性选择合适的臭氧曝气方式。
Abstract:In the Zero Liquid Discharge (ZLD) process of coking wastewater, mechanical vapor recompression (MVR) evaporation crystallization is employed to treat membrane-concentrated liquor, ultimately yielding highly saline concentrated wastewater, which is challenging to treat using conventional oxidation methods. Ozone micro nano bubble technology can enhance ozone mass transfer efficiency and augment its oxidation capability, making it a promising method for treating MVR-concentrated discharge. To verify the feasibility of engineering applications of this technology, this study focused on MVR-concentrated discharge and compared the ozone mass transfer rate and organic degradation efficiency between ozone micro nano bubbles and conventional macrobubbles. It analyzed the impact of salinity and organic concentration on the treatment efficiency of both ozone oxidation processes from technical and economic perspectives, thereby delineating the applicable scope of ozone micro nano bubble technology for high-salinity wastewater treatment. The results indicated that as the salinity increased from 0.1 mol/L to 1 mol/L, the ozone mass transfer coefficients for ozone micro nano bubbles and conventional macrobubbles increased by 0.13 and 0.09 times, respectively, with the ozone self-decomposition rate rising by 2.10 and 1.38 times, respectively. When treating high-salinity and high-organic wastewater (TOC 57.2-587.6 mg/L, conductivity 3.47-28.6 mS/cm), ozone micro nano bubble technology could enhance TOC removal rates by 0.50 to 3.76 times compared to conventional macrobubble technology, while reducing energy consumption per ton of water by up to 71%. When treating ultra-high salinity and ultra-high organic wastewater (TOC 5 626 mg/L, conductivity 164.3 mS/cm), the removal efficiency of micro nano bubbles tended to align with that of conventional macrobubbles, albeit with higher energy consumption per ton of water. The salinity and organic concentration of high-salinity wastewater significantly affect the treatment efficiency of ozone micro nano bubbles, and the appropriate ozone aeration method should be selected based on the wastewater characteristics in engineering applications
-
表 1 待处理废水的主要成分和指标
Table 1. Main components and indexes of wastewater to be treated
废水 稀释倍数 电导率/(mS/cm) pH COD/(mg/L) 总有机碳(TOC)/(mg/L) ${\mathrm{SO}}_4^{2-} $/(mg/L) Cl−/(mg/L) UV254 1#原废水 不稀释 164.30 9.34 11 100 5 626.0 149 220 74 310 0.870 2#废水 10倍 28.60 8.72 1 140 587.6 14 720 7 350 1.038 3#废水 50倍 6.44 7.45 253 117.7 2 941 1 437 1.030 4#废水 100倍 3.47 7.16 123 57.2 1 460 726 1.070 注:UV254为稀释后的测定值,1#原废水稀释100倍,2#废水稀释10倍,3#废水稀释2倍,4#废水不稀释。 表 2 盐浓度对不同臭氧曝气方式的气泡尺寸和传质参数的影响
Table 2. Impact of salt concentration on bubble size and mass transfer parameters by various ozone aeration methods
NaCl浓度/
(mol/L)曝气方式 D50 Cs/
(mg/L)kLa/min−1 kd/min−1 微米
气泡/μm纳米
气泡/nm0.1 大气泡 33.60 0.157 0.047 微纳米气泡 35.99 139.60 45.18 0.364 0.042 1 大气泡 23.46 0.171 0.112 微纳米气泡 102.11 197.50 29.20 0.413 0.130 表 3 荧光积分区域划分范围
Table 3. Scope of fluorescence integral area
区域 有机物类型 激发波长(Ex)/nm 发射波长(Em)/nm Ⅰ 类酪氨酸 220~250 280~330 Ⅱ 类色氨酸 220~250 330~380 Ⅲ 类富里酸 220~250 380~550 Ⅳ 溶解性微生物产物 250~450 280~380 Ⅴ 类腐殖酸 250~450 380~550 -
[1] TAMANG M, PAUL K K. Advances in treatment of coking wastewater: a state of art review[J]. Water Science and Technology,2022,85(1):449-473. doi: 10.2166/wst.2021.497 [2] 钱易, 文一波, 张辉明. 焦化废水中难降解有机物去除的研究[J]. 环境科学研究,1992,5(5):1-9. doi: 10.3321/j.issn:1001-6929.1992.05.001QIAN Y, WEN Y B, ZHANG H M. A study on the refractory organics removal from coke-plant wastewater[J]. Research of Environmental Sciences,1992,5(5):1-9. doi: 10.3321/j.issn:1001-6929.1992.05.001 [3] 张锐, 袁进, 李超. 焦化废水浓盐水零排放处理技术研究进展[J]. 工业水处理,2023,43(6):15-21.ZHANG R, YUAN J, LI C. Research progress on zero emission treatment technology for concentrated brine from coking wastewater[J]. Industrial Water Treatment,2023,43(6):15-21. [4] 卜兆骏, 仇雅丽, 刘勇奇, 等. Ti/Ru-Ir电极电催化氧化法降解MVR浓缩母液的研究[J]. 广东化工,2023,50(6):67-69. doi: 10.3969/j.issn.1007-1865.2023.06.021BU Z J, QIU Y L, LIU Y Q, et al. Study on degradation of concentrated mother liquor of MVR by electrocatalytic oxidation with Ti/Ru-Ir electrode[J]. Guangdong Chemical Industry,2023,50(6):67-69. doi: 10.3969/j.issn.1007-1865.2023.06.021 [5] 李妍. 臭氧催化氧化法在污水处理中的应用研究进展[J]. 中国资源综合利用,2020,38(12):122-124. doi: 10.3969/j.issn.1008-9500.2020.12.038LI Y. Application research progress of ozone catalytic oxidation method in wastewater treatment[J]. China Resources Comprehensive Utilization,2020,38(12):122-124. doi: 10.3969/j.issn.1008-9500.2020.12.038 [6] 程莹, 臧纪, 宋骏杰, 等. 基于臭氧微纳米气泡的O3-H2O2体系降解有机污染物的效能与影响因素[J]. 环境工程技术学报,2022,12(4):1317-1323.CHENG Y, ZANG J, SONG J J, et al. Degradation efficiency and influencing factors of organic contaminants in O3-H2O2 system based on ozone micro-nanobubbles[J]. Journal of Environmental Engineering Technology,2022,12(4):1317-1323. [7] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B,2007,111(6):1343-1347. doi: 10.1021/jp0669254 [8] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science,2017,246:40-51. doi: 10.1016/j.cis.2017.06.011 [9] ZHANG L, LI P, WANG X L, et al. Promotion effect of foam formation on the degradation of polyvinyl alcohol by ozone microbubble[J]. Journal of Environmental Chemical Engineering,2023,11(6):111192. doi: 10.1016/j.jece.2023.111192 [10] 马艳, 张鑫, 韩小蒙, 等. 臭氧微纳米气泡技术在水处理中的应用进展[J]. 净水技术,2019,38(8):64-67.MA Y, ZHANG X, HAN X M, et al. Application of micro-nano ozone bubble technology in water treatment: a review[J]. Water Purification Technology,2019,38(8):64-67. [11] LIU C, CHEN X X, ZHANG J, et al. Advanced treatment of bio-treated coal chemical wastewater by a novel combination of microbubble catalytic ozonation and biological process[J]. Separation and Purification Technology,2018,197:295-301. doi: 10.1016/j.seppur.2018.01.005 [12] CHU L B, XING X H, YU A F, et al. Enhanced treatment of practical textile wastewater by microbubble ozonation[J]. Process Safety and Environmental Protection,2008,86(5):389-393. doi: 10.1016/j.psep.2008.02.005 [13] 张亮, 周姝岑, 李攀, 等. 电絮凝-微纳米气泡臭氧氧化工艺处理高盐印染废水的研究[J]. 环境工程技术学报,2023,13(2):639-647.ZHANG L, ZHOU S C, LI P, et al. Study on treatment of high-salt printing and dyeing wastewater by electroflocculation-micro-nano-bubble ozone oxidation process[J]. Journal of Environmental Engineering Technology,2023,13(2):639-647. [14] 冯玥, 王璐, 陈泉源. 臭氧微气泡深度处理染料废水生化出水[J]. 环境工程学报,2013,7(12):4653-4658.FENG Y, WANG L, CHEN Q Y. Ozone microbubbles in tertiary purification of biological treatment effluent of dye-making wastewater[J]. Chinese Journal of Environmental Engineering,2013,7(12):4653-4658. [15] 张静, 张守敬, 刘春, 等. 工业废水水质对微气泡臭氧化深度处理影响[J]. 环境科学,2020,41(4):1752-1760.ZHANG J, ZHANG S J, LIU C, et al. Influence of industrial wastewater quality on advanced treatment of microbubble ozonation[J]. Environmental Science,2020,41(4):1752-1760. [16] 周姝岑, 芦婉蒙, 李攀. 微纳米气泡臭氧氧化处理印染废水产生的RO浓水[J]. 中国给水排水,2022,38(9):88-93.ZHOU S C, LU W M, LI P. Micro-nanobubble ozone oxidation for the treatment of RO concentrated water from dyeing wastewater[J]. China Water & Wastewater,2022,38(9):88-93. [17] 张培龙, 于丽, 庞立飞, 等. 微气泡曝气O3/H2O2处理RO浓水的效能及影响因素[J]. 环境工程学报,2014,8(1):242-248.ZHANG P L, YU L, PANG L F, et al. Treatment efficiency and influencing factors of RO concentrated water by microbubble ozonation with H2O2[J]. Chinese Journal of Environmental Engineering,2014,8(1):242-248. [18] 张全忠, 吴潘, 梁斌, 等. 液相中臭氧浓度的检测[J]. 工业水处理,2001,21(4):30-32.ZHANG Q Z, WU P, LIANG B, et al. Determination of the concentration of ozone in liquid phase[J]. Industrial Water Treatment,2001,21(4):30-32. [19] BADER H, HOIGNÉ J. Determination of ozone in water by the indigo method[J]. Water Research,1981,15(4):449-456. doi: 10.1016/0043-1354(81)90054-3 [20] ROUSTAN M, WANG R Y, WOLBERT D. Modeling hydrodynamics and mass transfer parameters in a continuous ozone bubble column[J]. Ozone: Science & Engineering, 1996, 18(2): 99-115. [21] JIANG P, CHEN H T, BABCOCK R W Jr, et al. Modeling ozone mass transfer in reclaimed wastewater[J]. Water Environment Research: a Research Publication of the Water Environment Federation,2009,81(1):57-68. doi: 10.2175/106143008X325782 [22] 国家环境保护总局.水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399—2007[S/OL]2024-01-05]. https://www.doc88.com/p-1045433167286.html. [23] LU K C, REN T F, YAN N, et al. Revisit the role of salinity in heterogeneous catalytic ozonation: the trade-off between reaction inhibition and mass transfer enhancement[J]. Environmental Science & Technology,2023,57(47):18888-18897. [24] BONCZ M A, BRUNING H, RULKENS W H, et al. The effect of salts on ozone oxidation processes[J]. Ozone: Science & Engineering, 2005, 27(4): 287-292. [25] WANG J L, WANG S Z. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants[J]. Chemical Engineering Journal,2021,411:128392. doi: 10.1016/j.cej.2020.128392 [26] LEVANOV A V, ISAIKINA O Y. Mechanism and kinetic model of Chlorate and perchlorate formation during ozonation of aqueous chloride solutions[J]. Industrial & Engineering Chemistry Research,2020,59(32):14278-14287. [27] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710. ◇