Study on the accumulation characteristics of nanoplastics in SD rats under inhalation exposure route
-
摘要:
为探讨吸入暴露纳米级塑料在生物体呼吸系统以外组织上的富集特征,以100 nm聚苯乙烯微球对SD大鼠进行2 h短期吸入暴露,使用热裂解-气相色谱质谱法测定大鼠肝脏、肾脏、心脏以及脑组织上的聚苯乙烯浓度。结果显示:暴露组大鼠肾脏、心脏和肝脏中的浓度〔(0.416±0.143)、(0.633±0.278)和(0.617±0.179)g/g〕显著高于对照组大鼠〔(0.249±0.020)、(0.070±0.096)和(0.101±0.140)g/g〕,差异具有统计学意义(P<0.05),但各组织间的相关性不显著(P>0.05);2组大鼠脑组织均未检出聚苯乙烯。研究表明,100 nm聚苯乙烯微球吸入暴露2 h后,可通过肺泡进入血液循环,进而在大鼠肝脏、肾脏、心脏中形成沉积。通过探讨纳米级塑料在生物体内的累积特征,为深入开展吸入纳米塑料对人体的健康影响研究提供数据支撑。
-
关键词:
- 聚苯乙烯纳米塑料 /
- 吸入暴露 /
- SD大鼠 /
- 热裂解-气相色谱质谱
Abstract:To explore the accumulation of respiratory nanoplastics in tissues out of respiratory system, the 100 nm polystyrene nanoplastics were used to perform a 2h-short term uptake exposure to SD rats, and the polystyrene concentrations in liver, kidney, heart, and brain of rats were determined with pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The results showed that the concentrations in the kidney, heart, and liver of the exposure group [(0.416±0.143), (0.633±0.278), and (0.617±0.179) g/g] were significantly higher than those of the control group [(0.249±0.020), (0.070±0.096), and (0.101±0.140) g/g] (P<0.05), but no significant correlation were found among different tissues (P>0.05), and polystyrene was not detected in the brain of both the control and exposure groups. The results show that the nanoplastics can enter the blood circulation of rats through the alveoli and deposit in tissues such as liver, kidney, and heart shortly after 2 h of inhalation exposure of 100 nm polystyrene nanoplastics. The study preliminarily explored the accumulation characteristics of nanoplastics in organisms, and could provide data support for further research on the potential impacts of respiratory nanoplastics on human health.
-
-
[1] 马占峰, 姜宛君. 中国塑料加工工业(2020)[J]. 中国塑料,2021,35(5):119-125.MA Z F, JIANG W J. China plastics industry(2020)[J]. China Plastics,2021,35(5):119-125. [2] 王红秋, 付凯妹. 新形势下我国废塑料回收利用产业现状与思考[J]. 塑料工业,2022,50(6):38-42. doi: 10.3969/j.issn.1005-5770.2022.06.003WANG H Q, FU K M. Status and thinking of plastic wastes recycling industry in China under the new situation[J]. China Plastics Industry,2022,50(6):38-42. doi: 10.3969/j.issn.1005-5770.2022.06.003 [3] HARTMANN N B, HÜFFER T, THOMPSON R C, et al. Are we speaking the same language: recommendations for a definition and categorization framework for plastic debris[J]. Environmental Science & Technology,2019,53(3):1039-1047. [4] JU H, YANG X M, TANG D, et al. Pesticide bioaccumulation in radish produced from soil contaminated with microplastics[J]. Science of the Total Environment,2024,910:168395. doi: 10.1016/j.scitotenv.2023.168395 [5] LI G, PEI Z G, LI Y M, et al. A high-precision, effective method for extraction and identification of small-sized microplastics from soil[J]. Talanta,2024,272:125802. doi: 10.1016/j.talanta.2024.125802 [6] 刘微, 李宇欣, 荣飒爽, 等. 土壤中微塑料对陆生植物的毒性及其降解机制研究进展[J]. 环境科学,2023,44(11):6267-6278.LIU W, LI Y X, RONG S S, et al. Research progress on toxicity of microplastics in soil to terrestrial plants and their degradation mechanism[J]. Environmental Science,2023,44(11):6267-6278. [7] DI M X, WANG J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment,2018,616/617:1620-1627. doi: 10.1016/j.scitotenv.2017.10.150 [8] ZHOU X X, HE S, GAO Y, et al. Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals[J]. Environmental Science & Technology,2021,55(5):3032-3040. [9] DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: a case study in Greater Paris[J]. Environmental Chemistry,2015,12(5):592. doi: 10.1071/EN14167 [10] CAN-GÜVEN E. Microplastics as emerging atmospheric pollutants: a review and bibliometric analysis[J]. Air Quality, Atmosphere & Health, 2021, 14(2): 203-215. [11] SHEN M C, ZHU Y, ZHANG Y X, et al. Micro(nano)plastics: unignorable vectors for organisms[J]. Marine Pollution Bulletin,2019,139:328-331. doi: 10.1016/j.marpolbul.2019.01.004 [12] YU H D, YANG B, WAIGI M G, et al. The effects of functional groups on the sorption of naphthalene on microplastics[J]. Chemosphere,2020,261:127592. doi: 10.1016/j.chemosphere.2020.127592 [13] NAQASH N, PRAKASH S, KAPOOR D, et al. Interaction of freshwater microplastics with biota and heavy metals: a review[J]. Environmental Chemistry Letters,2020,18(6):1813-1824. doi: 10.1007/s10311-020-01044-3 [14] HODSON M E, DUFFUS-HODSON C A, CLARK A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology,2017,51(8):4714-4721. [15] SHEN X C, LI D C, SIMA X F, et al. The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column[J]. Environmental Research,2018,166:377-383. doi: 10.1016/j.envres.2018.06.034 [16] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution,2018,237:460-467. doi: 10.1016/j.envpol.2018.02.050 [17] LESLIE H A, van VELZEN M J M, BRANDSMA S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International,2022,163:107199. doi: 10.1016/j.envint.2022.107199 [18] HORVATITS T, TAMMINGA M, LIU B B, et al. Microplastics detected in cirrhotic liver tissue[J]. EBioMedicine,2022,82:104147. doi: 10.1016/j.ebiom.2022.104147 [19] IBRAHIM Y S, TUAN ANUAR S, AZMI A A, et al. Detection of microplastics in human colectomy specimens[J]. JGH Open,2021,5(1):116-121. doi: 10.1002/jgh3.12457 [20] RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: first evidence of microplastics in human placenta[J]. Environment International,2021,146:106274. doi: 10.1016/j.envint.2020.106274 [21] XU J L, LIN X H, WANG J J, et al. A review of potential human health impacts of micro- and nanoplastics exposure[J]. Science of the Total Environment, 2022, 851(Pt 1): 158111. [22] COX K D, COVERNTON G A, DAVIES H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology,2019,53(12):7068-7074. [23] SHEN M C, ZENG Z T, WEN X F, et al. Presence of microplastics in drinking water from freshwater sources: the investigation in Changsha, China[J]. Environmental Science and Pollution Research,2021,28(31):42313-42324. doi: 10.1007/s11356-021-13769-x [24] ZARUS G M, MUIANGA C, HUNTER C M, et al. A review of data for quantifying human exposures to micro and nanoplastics and potential health risks[J]. Science of the Total Environment,2021,756:144010. doi: 10.1016/j.scitotenv.2020.144010 [25] BARBOZA L G A, LOPES C, OLIVEIRA P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure[J]. Science of the Total Environment,2020,717:134625. doi: 10.1016/j.scitotenv.2019.134625 [26] RENZI M, BLAŠKOVIĆ A. Litter & microplastics features in table salts from marine origin: Italian versus Croatian brands[J]. Marine Pollution Bulletin,2018,135:62-68. doi: 10.1016/j.marpolbul.2018.06.065 [27] OLIVERI CONTI G, FERRANTE M, BANNI M, et al. Micro- and nano-plastics in edible fruit and vegetables: the first diet risks assessment for the general population[J]. Environmental Research,2020,187:109677. doi: 10.1016/j.envres.2020.109677 [28] CHEN E Y, LIN K T, JUNG C C, et al. Characteristics and influencing factors of airborne microplastics in nail salons[J]. Science of the Total Environment, 2022, 806(Pt 4): 151472. [29] ZHU X, HUANG W, FANG M Z, et al. Airborne microplastic concentrations in five megacities of northern and southeast China[J]. Environmental Science & Technology,2021,55(19):12871-12881. [30] DRIS R, GASPERI J, MIRANDE C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments[J]. Environmental Pollution,2017,221:453-458. doi: 10.1016/j.envpol.2016.12.013 [31] LIAO Z L, JI X L, MA Y, et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China[J]. Journal of Hazardous Materials,2021,417:126007. doi: 10.1016/j.jhazmat.2021.126007 [32] AKHBARIZADEH R, DOBARADARAN S, AMOUEI TORKMAHALLEH M, et al. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications[J]. Environmental Research,2021,192:110339. doi: 10.1016/j.envres.2020.110339 [33] PAULY J L, STEGMEIER S J, ALLAART H A, et al. Inhaled cellulosic and plastic fibers found in human lung tissue[J]. Cancer Epidemiology, Biomarkers & Prevention: a Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 1998, 7(5): 419-428. [34] 刘立明, 王超, 巩文雯, 等. 宜昌市大气微塑料的分布、呼吸暴露及溯源[J]. 环境科学,2023,44(6):3152-3164.LIU L M, WANG C, GONG W W, et al. Distribution, respiratory exposure, and traceability of atmospheric microplastics in Yichang City[J]. Environmental Science,2023,44(6):3152-3164. [35] LIU K, WANG X H, FANG T, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai[J]. Science of the Total Environment,2019,675:462-471. doi: 10.1016/j.scitotenv.2019.04.110 [36] PRATA J C. Airborne microplastics: consequences to human health[J]. Environmental Pollution,2018,234:115-126. doi: 10.1016/j.envpol.2017.11.043 [37] DOMENECH J, MARCOS R. Pathways of human exposure to microplastics, and estimation of the total burden[J]. Current Opinion in Food Science,2021,39:144-151. doi: 10.1016/j.cofs.2021.01.004 [38] AMATO-LOURENÇO L F, CARVALHO-OLIVEIRA R, JÚNIOR G R, et al. Presence of airborne microplastics in human lung tissue[J]. Journal of Hazardous Materials,2021,416:126124. doi: 10.1016/j.jhazmat.2021.126124 [39] BAEZA-MARTÍNEZ C, OLMOS S, GONZÁLEZ-PLEITER M, et al. First evidence of microplastics isolated in European citizens' lower airway[J]. Journal of Hazardous Materials,2022,438:129439. doi: 10.1016/j.jhazmat.2022.129439 [40] JIANG Y, HAN J C, NA J, et al. Exposure to microplastics in the upper respiratory tract of indoor and outdoor workers[J]. Chemosphere, 2022, 307(Pt 3): 136067. [41] HUANG S M, HUANG X X, BI R, et al. Detection and analysis of microplastics in human sputum[J]. Environmental Science & Technology,2022,56(4):2476-2486. [42] SHAN S, ZHANG Y F, ZHAO H W, et al. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice[J]. Chemosphere,2022,298:134261. doi: 10.1016/j.chemosphere.2022.134261 [43] ESTRELA F N, GUIMARÃES A T B, ARAÚJO A P D C, et al. Toxicity of polystyrene nanoplastics and zinc oxide to mice[J]. Chemosphere,2021,271:129476. doi: 10.1016/j.chemosphere.2020.129476 [44] LI X R, ZHANG T T, LV W T, et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice[J]. Ecotoxicology and Environmental Safety,2022,232:113238. doi: 10.1016/j.ecoenv.2022.113238 [45] LU K, LAI K P, STOEGER T, et al. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology[J]. Journal of Hazardous Materials,2021,416:126069. doi: 10.1016/j.jhazmat.2021.126069 [46] VARELA J A, BEXIGA M G, ÅBERG C, et al. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells[J]. Journal of Nanobiotechnology,2012,10:39. doi: 10.1186/1477-3155-10-39 [47] LIM D, JEONG J, SONG K S, et al. Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412[J]. Chemosphere,2021,262:128330. doi: 10.1016/j.chemosphere.2020.128330 [48] KOPATZ V, WEN K, KOVÁCS T, et al. Micro- and nanoplastics breach the blood-brain barrier (BBB): biomolecular Corona's role revealed[J]. Nanomaterials,2023,13(8):1404. doi: 10.3390/nano13081404 [49] LIU X Y, ZHAO Y C, DOU J B, et al. Bioeffects of inhaled nanoplastics on neurons and alteration of animal behaviors through deposition in the brain[J]. Nano Letters,2022,22(3):1091-1099. ⊕ doi: 10.1021/acs.nanolett.1c04184