留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微塑料对土壤微生物群落结构影响及共生网络分析

尚耘旭 古雄杰 余红 郑涵云 李文金 全占军 王菲菲

尚耘旭,古雄杰,余红,等.微塑料对土壤微生物群落结构影响及共生网络分析[J].环境工程技术学报,2024,14(3):719-731 doi: 10.12153/j.issn.1674-991X.20240111
引用本文: 尚耘旭,古雄杰,余红,等.微塑料对土壤微生物群落结构影响及共生网络分析[J].环境工程技术学报,2024,14(3):719-731 doi: 10.12153/j.issn.1674-991X.20240111
SHANG Y X,GU X J,YU H,et al.Effects of microplastics on soil microbial community structure and symbiotic network analysis[J].Journal of Environmental Engineering Technology,2024,14(3):719-731 doi: 10.12153/j.issn.1674-991X.20240111
Citation: SHANG Y X,GU X J,YU H,et al.Effects of microplastics on soil microbial community structure and symbiotic network analysis[J].Journal of Environmental Engineering Technology,2024,14(3):719-731 doi: 10.12153/j.issn.1674-991X.20240111

微塑料对土壤微生物群落结构影响及共生网络分析

doi: 10.12153/j.issn.1674-991X.20240111
基金项目: 国家重点研发计划项目(2020YFC1909502)
详细信息
    作者简介:

    尚耘旭(1997—),女,硕士研究生,主要从事新污染物生态环境风险研究,shangyunxu@foxmail.com

    通讯作者:

    全占军(1979—),男,研究员,主要从事生态学研究,quanzj@craes.org.cn

    王菲菲(1978—),女,研究员,主要从事新污染物毒性效应和环境风险研究,wangff@craes.org.cn

  • 中图分类号: X53

Effects of microplastics on soil microbial community structure and symbiotic network analysis

  • 摘要:

    土壤是微塑料的主要储存库,微塑料进入土壤生态系统后可以形成与周围环境显著不同的“塑料圈”,影响土壤微生物群落结构。通过外源添加微塑料颗粒模拟不同程度的农田土壤微塑料污染,探究微塑料对土壤微生物群落的影响。结果显示,微塑料污染会对土壤中微生物属水平细菌和真菌群落带来极大改变,根际土壤和非根际土壤的微塑料处理高浓度组真菌群落特有属数量显著高于低浓度组(p<0.05),且微塑料污染引起的根际土壤与非根际土壤的细菌群落和真菌群落结构变化均存在较大差异。土壤微生物群落多样性及共生网络分析结果表明,高浓度组微塑料添加显著降低土壤微生物多样性,微塑料对根际土壤微生物的影响大于非根际土壤。研究结果提示土壤真菌群落对微塑料污染的响应程度大于细菌群落,未来土壤微塑料相关研究需要进一步重视根际土壤监测。

     

  • 图  1  共有和独有的土壤细菌群落属水平Venn图

    注:图中数字分别表示细菌属数量(占比)。

    Figure  1.  Genus-level Venn diagram of shared and special soil bacterial communities

    图  2  共有和独有的土壤真菌群落属水平Venn图

    Figure  2.  Genus-level Venn diagram of shared and special soil fungal communities

    图  3  门和属水平的细菌群落结构

    Figure  3.  Bacterial community structure at the phylum and genus level

    图  4  细菌门至属水平差异性分析进化分支图(LEfSe分析)

    Figure  4.  Evolutionary branching diagram for variability analysis of bacterial phylum to genus level (LEfSe analysis)

    图  5  门和目水平的真菌群落结构

    Figure  5.  Fungal community structure at the phylum and order level

    图  6  真菌门至属水平差异性分析进化分支图(LEfSe分析)

    Figure  6.  Evolutionary branching diagram for variability analysis of fungal phylum to genus level (LEfSe analysis)

    图  7  土壤细菌群落α多样性——Chao1指数

    注:不同小写字母表示根际土壤在不同微塑料处理组织之间存在显著差异(p<0.05);不同大写字母表示非根际土壤在不同微塑料处理组之间存在显著差异(p<0.05);***表示根际与非根际土壤存在极显著差异(p<0.001)。全文同。

    Figure  7.  Soil bacterial community alpha diversity: Chao1 index

    图  8  根际和非根际土壤细菌群落PLS-DA分析

    Figure  8.  PLS-DA analysis of bacterial communities in rhizosphere and non-rhizosphere soils

    图  9  土壤真菌群落α多样性——Chao1指数

    注:不同小写字母表示根际土壤在不同微塑料处理组织之间存在显著差异(p<0.05);不同大写字母表示非根际土壤在不同微塑料处理组织之间存在显著差异(p<0.05);“***”表示根际与非根际土壤存在极显著差异(p<0.001)。

    Figure  9.  Soil fungal community alpha diversity: Chao1 index

    图  10  根际和非根际土壤真菌群落PLS-DA分析

    Figure  10.  PLS-DA analysis of fungal communities in rhizosphere and non-rhizosphere soils

    图  11  土壤细菌共生网络

    Figure  11.  Soil bacterial symbiotic network

    图  12  土壤真菌共生网络

    Figure  12.  Soil bacterial symbiotic network

    表  1  土壤细菌群落α多样性——Shannon和Simpson指数

    Table  1.   Soil bacterial community alpha diversity: Shannon and Simpson indexes

    根际土壤 Shannon指数 Simpson指数 非根际土壤 Shannon指数 Simpson指数
    0_R 6.24ab 0.992 6ab 0_B 6.44A 0.993 8AB
    0.5_R 6.04bc 0.990 6b 0.5_B 6.22B 0.992 8C
    1_R 6.38ab 0.994 0a 1_B 6.48A 0.993 5B
    2.5_R 6.47a 0.993 9a 2.5_B 6.50A 0.994 3A
    5_R 6.21ab 0.992 4ab 5_B 6.26B 0.993 5B
    10_R 6.02c 0.989 2b 10_B 6.30B 0.993 2BC
    下载: 导出CSV

    表  2  土壤真菌群落α多样性——Shannon和Simpson指数

    Table  2.   Soil fungal community alpha diversity: Shannon and Simpson indexes

    根际土壤 Shannon指数 Simpson指数 非根际土壤 Shannon指数 Simpson指数
    0_R 2.17c 0.726 3b 0_B 2.49C 0.749 2B
    0.5_R 3.66a 0.911 1a 0.5_B 3.71A 0.935 9A
    1_R 3.22ab 0.856 8a 1_B 3.03B 0.828 0B
    2.5_R 3.09ab 0.878 0a 2.5_B 2.63C 0.807 7B
    5_R 3.28ab 0.907 0a 5_B 3.75A 0.920 6A
    10_R 2.88b 0.794 9ab 10_B 3.61A 0.907 7A
    下载: 导出CSV

    表  3  土壤细菌共生网络拓扑参数

    Table  3.   Soil bacterial symbiotic network topological parameters

    土壤类型 节点 平均加权度 网络直径 网络密度 模块化 平均聚类系数 平均路径长度
    根际土壤 200 2212 22.1 7 0.111 0.406 0.547 2.905
    非根际土壤 200 1648 16.5 6 0.083 0.514 0.504 2.919
    下载: 导出CSV

    表  4  土壤真菌共生网络拓扑参数

    Table  4.   Soil fungal symbiotic network topology parameters

    土壤类型 节点 平均加权度 网络直径 网络密度 模块化 平均聚类系数 平均路径长度
    根际土壤 200 1154 11.5 6 0.063 0.582 0.559 3.032
    非根际土壤 200 1028 10.3 6 0.052 0.682 0.605 3.061
    下载: 导出CSV
  • [1] LIU K, WANG X H, SONG Z Y, et al. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport[J]. Science of the Total Environment,2020,742:140523. doi: 10.1016/j.scitotenv.2020.140523
    [2] 陈玉芳, 闫振华, 张燕, 等. 城市水体微塑料垂向分布下附着细菌群落结构和功能响应[J]. 环境科学,2022,43(6):3088-3096.

    CHEN Y F, YAN Z H, ZHANG Y, et al. Community structure and microbial function responses of biofilms colonizing on microplastics with vertical distribution in urban water[J]. Environmental Science,2022,43(6):3088-3096.
    [3] 胡志娥, 肖谋良, 丁济娜, 等. 长期覆膜条件下农田土壤微生物群落的响应特征[J]. 环境科学,2022,43(10):4745-4754.

    HU Z E, XIAO M L, DING J N, et al. Response characteristics of soil microbial community under long-term film mulching[J]. Environmental Science,2022,43(10):4745-4754.
    [4] YUAN J H, MA J, SUN Y R, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment,2020,715:136968. doi: 10.1016/j.scitotenv.2020.136968
    [5] LI W L, WANG Z C, LI W P, et al. Impacts of microplastics addition on sediment environmental properties, enzymatic activities and bacterial diversity[J]. Chemosphere,2022,30:135836.
    [6] ZHANG X Y, LI Y, LEI J J, et al. Time-dependent effects of microplastics on soil bacteriome[J]. Journal of Hazardous Materials,2023,447:130762. doi: 10.1016/j.jhazmat.2023.130762
    [7] 赵岩, 陈学庚, 温浩军, 等. 农田残膜污染治理技术研究现状与展望[J]. 农业机械学报,2017,48(6):1-14. doi: 10.6041/j.issn.1000-1298.2017.06.001

    ZHAO Y, CHEN X G, WEN H J, et al. Research status and prospect of control technology for residual plastic film pollution in farmland[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(6):1-14. doi: 10.6041/j.issn.1000-1298.2017.06.001
    [8] 黎鹏. 微塑料与磷添加对玉米生长及土壤特性的影响[D]. 杨凌: 西北农林科技大学, 2021.
    [9] SIMPSON E H. Measurement of diversity[J]. Nature,1949,163:688. doi: 10.1038/163688a0
    [10] WANG B H, JIANG X Y, CAO M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Scientific Reports,2016,6:32002. doi: 10.1038/srep32002
    [11] SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology,2011,12(6):R60. doi: 10.1186/gb-2011-12-6-r60
    [12] CAMPOS P M, DARWISH N, SHAO J, et al. Research note: choice of microbiota database affects data analysis and interpretation in chicken cecal microbiota[J]. Poultry Science,2022,101(8):101971. doi: 10.1016/j.psj.2022.101971
    [13] LÜCKING R, AIME M C, ROBBERTSE B, et al. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding[J]. IMA Fungus,2020,11:14. doi: 10.1186/s43008-020-00033-z
    [14] RILLIG M C. Microplastic disguising as soil carbon storage[J]. Environmental Science & Technology,2018,52(11):6079-6080.
    [15] GUO J J, HUANG X P, XIANG L, et al. Source, migration and toxicology of microplastics in soil[J]. Environment International,2020,137:105263. doi: 10.1016/j.envint.2019.105263
    [16] KAUR P, SINGH K, SINGH B. Microplastics in soil: impacts and microbial diversity and degradation[J]. Pedosphere,2022,32(1):49-60. doi: 10.1016/S1002-0160(21)60060-7
    [17] FAN P, TAN W B, YU H. Effects of different concentrations and types of microplastics on bacteria and fungi in alkaline soil[J]. Ecotoxicology and Environmental Safety,2022,229:113045. doi: 10.1016/j.ecoenv.2021.113045
    [18] MUÑOZ K, SCHMIDT-HEYDT M, STOLL D, et al. Effect of plastic mulching on mycotoxin occurrence and mycobiome abundance in soil samples from asparagus crops[J]. Mycotoxin Research,2015,31(4):191-201. doi: 10.1007/s12550-015-0231-9
    [19] MAVRODI O V, McWilliams J R, PETER J O, et al. Root exudates alter the expression of diverse metabolic, transport, regulatory, and stress response genes in rhizosphere Pseudomonas[J]. Frontiers in Microbiology,2021,12:651282. doi: 10.3389/fmicb.2021.651282
    [20] ROGERS E D, BENFEY P N. Regulation of plant root system architecture: implications for crop advancement[J]. Current Opinion in Biotechnology,2015,32:93-98. doi: 10.1016/j.copbio.2014.11.015
    [21] 朱琳, 曾椿淋, 李雨青, 等. 基于高通量测序的大豆连作土壤细菌群落多样性分析[J]. 大豆科学,2017,36(3):419-424.

    ZHU L, ZENG C L, LI Y Q, et al. The characteristic of bacterial community diversity in soybean field with continuous cropping based on the high-throughput sequencing[J]. Soybean Science,2017,36(3):419-424.
    [22] 孙霞. 微塑料对农田土壤微生物群落及功能的影响[D]. 武汉: 武汉轻工大学, 2022.
    [23] 刘纯, 赵正, 刘晓雨, 等. 乡村小流域不同土壤景观表土有机质团聚体分布与分子组成变化[J]. 植物营养与肥料学报,2022,28(5):798-811. doi: 10.11674/zwyf.2021503

    LIU C, ZHAO Z, LIU X Y, et al. Changes in aggregate distribution and molecular composition of organic matter of topsoil across soil landscapes within a small watershed in a rural area[J]. Journal of Plant Nutrition and Fertilizers,2022,28(5):798-811. doi: 10.11674/zwyf.2021503
    [24] 费禹凡, 黄顺寅, 王佳青, 等. 设施农业土壤微塑料污染及其对细菌群落多样性的影响[J]. 科学通报,2021,66(13):1592-1601. doi: 10.1360/TB-2020-0685

    FEI Y F, HUANG S Y, WANG J Q, et al. Microplastics contamination in the protected agricultural soils and its effects on bacterial community diversity[J]. Chinese Science Bulletin,2021,66(13):1592-1601. doi: 10.1360/TB-2020-0685
    [25] SEELEY M E, SONG B, PASSIE R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications,2020,11:2372. doi: 10.1038/s41467-020-16235-3
    [26] REN X W, TANG J C, LIU X M, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil[J]. Environmental Pollution,2020,256:113347. doi: 10.1016/j.envpol.2019.113347
    [27] RILLIG M C, de SOUZA MACHADO A A, LEHMANN A, et al. Evolutionary implications of microplastics for soil biota[J]. Environmental Chemistry,2019,16(1):3-7. doi: 10.1071/EN18118
    [28] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology,2019,53(19):11496-11506.
    [29] SU Y L, ZHANG Z J, ZHU J D, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: the enhanced roles of the long-term aging process[J]. Environmental Pollution,2021,270:116278. doi: 10.1016/j.envpol.2020.116278
    [30] 韦婧, 涂晨, 杨杰, 等. 微塑料对农田土壤理化性质、土壤微生物群落结构与功能的影响[J]. 生态与农村环境学报,2023,39(5):644-652.

    WEI J, TU C, YANG J, et al. Impact of microplastics on the physicochemical properties, microbial community structure, and functions of farmland soils[J]. Journal of Ecology and Rural Environment,2023,39(5):644-652.
    [31] 何应会, 黄耀恒, 陆荣民, 等. 油梨根际土壤微生物群落及其共生网络对根腐病的响应[J/OL]. 中南林业科技大学学报, 2024: 1-10.
    [32] GUO B, ZHANG L, SUN H J, et al. Microbial co-occurrence network topological properties link with reactor parameters and reveal importance of low-abundance Genera[J]. NPJ Biofilms and Microbiomes,2022,8:3. doi: 10.1038/s41522-021-00263-y
    [33] MORRIËN E, HANNULA S E, SNOEK L B, et al. Soil networks become more connected and take up more carbon as nature restoration progresses[J]. Nature Communications,2017,8:14349. doi: 10.1038/ncomms14349
    [34] PAZOS F, CHAGOYEN M. Network analysis in systems biology[M]//Comprehensive foodomics. Amsterdam: Elsevier, 2021: 434-445.
    [35] HARTMANN M, FREY B, MAYER J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. ISME Journal,2015,9(5):1177-1194. doi: 10.1038/ismej.2014.210
    [36] ZHOU Y T, SUN Y, LIU J L, et al. Effects of microplastics on humification and fungal community during cow manure composting[J]. Science of the Total Environment,2022,803:150029. doi: 10.1016/j.scitotenv.2021.150029
    [37] MIAO F H, YAO L, ZHAO X J. Evolving convolutional neural networks by symbiotic organisms search algorithm for image classification[J]. Applied Soft Computing,2021,109:107537. ⊕ doi: 10.1016/j.asoc.2021.107537
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  144
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 录用日期:  2024-04-23
  • 修回日期:  2024-03-26

目录

    /

    返回文章
    返回