留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VECTO软件的重型车CO2排放敏感性分析

种衍懿 王燕军 张鹤丰 柯佳 李凯

种衍懿,王燕军,张鹤丰,等.基于VECTO软件的重型车CO2排放敏感性分析[J].环境工程技术学报,2024,14(4):1178-1183 doi: 10.12153/j.issn.1674-991X.20240112
引用本文: 种衍懿,王燕军,张鹤丰,等.基于VECTO软件的重型车CO2排放敏感性分析[J].环境工程技术学报,2024,14(4):1178-1183 doi: 10.12153/j.issn.1674-991X.20240112
CHONG Y Y,WANG Y J,ZHANG H F,et al.Sensitivity analysis of heavy vehicle CO2 emission based on VECTO software[J].Journal of Environmental Engineering Technology,2024,14(4):1178-1183 doi: 10.12153/j.issn.1674-991X.20240112
Citation: CHONG Y Y,WANG Y J,ZHANG H F,et al.Sensitivity analysis of heavy vehicle CO2 emission based on VECTO software[J].Journal of Environmental Engineering Technology,2024,14(4):1178-1183 doi: 10.12153/j.issn.1674-991X.20240112

基于VECTO软件的重型车CO2排放敏感性分析

doi: 10.12153/j.issn.1674-991X.20240112
基金项目: 国家重点研发计划项目(2022YFB2602001);移动源污染排放控制技术国家工程实验室开放基金项目(NELMS2019A19)
详细信息
    作者简介:

    种衍懿(1998—),男,硕士研究生,主要从事软件模拟研究,chongyanyi@126.com

    通讯作者:

    王燕军(1975—),男,正高级工程师,主要从事移动源污染控制研究,wangyj@vecc.org.cn

    张鹤丰(1979—),男,研究员,主要从事移动源污染物排放特征研究,zhanghf@vecc.org.cn

  • 中图分类号: X701

Sensitivity analysis of heavy vehicle CO2 emission based on VECTO software

  • 摘要:

    为了研究重型车特性参数对CO2排放的影响,以中国厢式货车、不同运行工况下的欧洲C2级货车和欧洲城际客车为例,采用VECTO软件测算车辆的滚阻系数、风阻系数、轮胎动力学半径、附件最大总功率、主减速器和变速箱机械效率及转矩损失等参数对CO2排放的影响,分析不同参数变化对CO2排放测算结果变动的敏感性。结果表明,滚阻系数、风阻系数、附件总功率、主减速器和变速箱各挡位转矩损失参数变动幅度与车辆CO2比排放变动幅度基本呈正线性相关,各参数20%的变动幅度最大将引起4.4%、7.2%、1.9%、1.2%和1.4%的CO2比排放变动幅度;轮胎动力学半径变动幅度对CO2的影响为非线性关系,负的轮胎动力学半径变动幅度引起的CO2排放变动幅度要高于正的变动幅度,−20%的轮胎动力学半径变动幅度最大将引起7.1%左右的CO2比排放变动幅度;主减速器和变速箱各挡位的机械效率变动幅度与CO2比排放变动幅度呈负线性相关,−2.8%左右的机械效率偏差引起2.3%左右的CO2比排放变动幅度。研究结果可为重型车节能降碳改进设计提供参考。

     

  • 图  1  VECTO主程序示意

    Figure  1.  Main program scheme of VECTO

    图  2  滚阻系数对CO2比排放模拟的影响

    Figure  2.  Effect of rolling resistance coefficient on CO2 specific emission simulation

    图  3  风阻系数对CO2比排放模拟的影响

    Figure  3.  Effect of wind resistance coefficient on CO2 specific emission simulation

    图  4  轮胎动力学半径对CO2比排放的影响

    Figure  4.  Effect of tire dynamic radius on CO2 specific emission

    图  5  机械效率对CO2比排放的影响

    Figure  5.  Effect of mechanical efficiency on CO2 specific emission

    图  6  主减速器和变速箱各挡位转矩损失对CO2比排放的影响

    Figure  6.  Effect of torque loss in each gear of main retarder and gearbox on CO2 specific emission

    图  7  附件总功率对CO2比排放的影响

    Figure  7.  Effect of accessory total power on CO2 specific emission

    表  1  模拟所选车辆信息和4种模拟情形

    Table  1.   Vehicles information and four scenarios for simulation

    车辆
    类型
    模拟使用的整车质量/kg允许的最大
    满载质量/kg
    车轴
    配置
    车轮
    总数
    驱动
    轮数
    发动机
    排量/L
    发动机额定
    功率/kW
    模拟使用
    驾驶循环
    国产厢式货车9 12018 0004$ \times $2647.79221C-WTVC循环
    欧洲C2级货车4 670+3 020(负载)+1 900(挂车)11 9904$ \times $2526.87175VECTO中自带Region循环
    欧洲C2级货车4 670+3 020(负载)+1 900(挂车)11 9904$ \times $2526.87175VECTO中自带Urban循环
    欧洲城际客车14 800+5 170(负载)25 0006$ \times $2847.70250VECTO中自带InterUrban循环
    下载: 导出CSV

    表  2  驾驶循环特征参数对比

    Table  2.   Comparison of driving cycle characteristic parameters

    驾驶循环运行时间/s怠速时间/s最高速度/
    (km/h)
    平均速度/
    (km/h)
    C-WTVC循环1 80018687.840.997
    Region循环25 94511485.074.277
    Urban循环28 42963985.051.558
    InterUrban循环125 210.81 708.885.039.917
    下载: 导出CSV

    表  3  车辆特性参数初始设置

    Table  3.   Original vehicle characteristic parameters setup

    车辆类型滚阻系数风阻系数/m2轮胎动力学半径/mm附件最大总功率/W主减速器机械效率或功率损失各挡位机械效率或转矩损失
    国产厢式货车0.005 55.2005075 0000.9770.977
    欧洲C2级货车0.006 54.8304213 540功率损失MAP图功率损失MAP图
    欧洲城际客车0.006 54.1155075 000功率损失MAP图功率损失MAP图
    下载: 导出CSV
  • [1] 马洪运, 周磊, 张雪琦, 等. 人工湿地温室气体排放研究进展与减污降碳优化[J]. 环境工程技术学报,2023,13(6):2043-2052.

    MA H Y, ZHOU L, ZHANG X Q, et al. Research progress of greenhouse gas emissions and optimization of pollution removal and carbon reduction in constructed wetland[J]. Journal of Environmental Engineering Technology,2023,13(6):2043-2052.
    [2] JAHANGER A, HOSSAIN M R, AWAN A. Exploring the critical nexus among energy mineral, globalization, and CO2 emissions in NAFTA: what's the forum's response amid asymmetries[J]. Resources Policy,2024,90:104825. doi: 10.1016/j.resourpol.2024.104825
    [3] 罗良文, 雷朱家华. 中国碳市场政策的减污降碳协同效应[J]. 资源科学,2024,46(1):53-68.

    LUO L W, LEI Z. Synergetic effect of China's carbon market policies on pollution reduction and carbon reduction[J]. Resources Science,2024,46(1):53-68.
    [4] 张剑, 刘景洋, 董莉, 等. 中国能源消费CO2排放的影响因素及情景分析[J]. 环境工程技术学报,2023,13(1):1-78.

    ZHANG J, LIU J Y, DONG L, et al. Influencing factors and scenario analysis of China's CO2 emission of energy consumption[J]. Journal of Environmental Engineering Technology,2023,13(1):1-78.
    [5] 中国政府网. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. (2021-10-26)[2024-01-29]. https://www.gov.cn/zhengce/content/2021-10/26/content_56 44984.htm.
    [6] ZHI G R, DU J H, CHEN A Z, et al. Progression of an emission inventory of China integrating CO2 with air pollutants: a chance to learn the influence of development on emissions[J]. Atmospheric Environment,2024,316:120184. doi: 10.1016/j.atmosenv.2023.120184
    [7] XU Y L, LIU Z Y, XUE W B, et al. Identification of on-road vehicle CO2 emission pattern in China: a study based on a high-resolution emission inventory[J]. Resources, Conservation & Recycling, 2021, 175: 105891.
    [8] 黄志辉, 纪亮, 尹洁, 等. 中国道路交通二氧化碳排放达峰路径研究[J]. 环境科学研究,2022,35(2):385-393.

    HUANG Z H, JI L, YIN J, et al. Peak pathway of China's road traffic carbon emissions[J]. Research of Environmental Sciences,2022,35(2):385-393.
    [9] BREED A K, SPETH D, PLÖTZ P. CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe[J]. Energy Policy,2021,159:112640. doi: 10.1016/j.enpol.2021.112640
    [10] FONTARAS G, REXEIS M, DILARA P, et al. The development of a simulation tool for monitoring heavy-duty vehicle CO2 emissions and fuel consumption in Europe[R]. New York: SAE international, 2013.
    [11] PETTERSSON P, JACOBSON B, BRUZELIUS F, et al. Intrinsic differences between backward and forward vehicle simulation models[J]. IFAC-PapersOnLine,2020,53(2):14292-14299. doi: 10.1016/j.ifacol.2020.12.1368
    [12] FONTARAS G, GRIGORATOS T, SAVVIDIS D, et al. An experimental evaluation of the methodology proposed for the monitoring and certification of CO2 emissions from heavy-duty vehicles in Europe[J]. Energy,2016,102:354-364. doi: 10.1016/j.energy.2016.02.076
    [13] ZACHAROF N, FONTARAS G, GIUFFO B, et al. An estimation of heavy-duty vehicle fleet CO2 emissions based on sampled data[J]. Transportation Research Part D,2021,94:102784. doi: 10.1016/j.trd.2021.102784
    [14] DJORDJEVIC B, GHOSH B. Estimation of emissions and fuel consumption from Irish HDVs using VECTO tool[J]. Transportation Research Procedia,2023,72:3825-3831. doi: 10.1016/j.trpro.2023.11.505
    [15] SEO J, PARK S. Developing an official program to calculate heavy-duty vehicles CO2 emissions in Korea[J]. Transportation Research Part D: Transport and Environment,2023,120:103774. doi: 10.1016/j.trd.2023.103774
    [16] European Union. Regulation (EU) 2018/956 of the European parliament and of the Council of 28 June 2018 on the monitoring and reporting of CO2 emissions from and fuel consumption of new heavy-duty vehicles[S]. Belgium: European Union, 2018.
    [17] European Union. Setting CO2 emission performance standards for new heavy-duty vehicles and amending Regulations (EC) No 595/2009 and (EU) 2018/956 of the European parliament and of the Council and Council Directive 96/53/EC[S]. Belgium: European Union, 2019.
    [18] 汪晓伟, 李粟, 吴琳琳, 等. 基于底盘测功机、EIL和VECTO的重型商用车C-WTVC循环下油耗对比分析[C]//中国汽车工程学会. 2021年中国汽车工程学会年会论文集. 北京: 中国汽车工程学会, 2021: 1721-1725.
    [19] 施佳能, 李粟, 张佑源, 等. 基于VECTO的商用车中国工况碳排放仿真[J]. 内燃机与动力装置,2022,39(3):73-80.

    SHI J N, LI S, ZHANG Y Y, et al. CO2 emission simulation of commercial vehicle under CHTC based on VECTO software[J]. Internal Combustion Engine & Powerplant,2022,39(3):73-80.
    [20] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 重型商用车辆燃料消耗量限值: GB 30510—2014[S]. 北京: 中国标准出版社, 2014.
    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 重型商用车辆燃料消耗量限值: GB 30510—2018[S]. 北京: 中国标准出版社, 2018.
    [22] 工业和信息化部. 公开征求《汽车软件升级通用技术要求》等九项强制性国家标准的意见[EB/OL]. (2022-06-17)[2024-03-20]. https://www.miit.gov.cn/jgsj/zbys/qcgy/art/2022/art_c1878e9460a74860a37bd3964436116d.html.
    [23] KOOSSALAPEEROM T, SATIENNAM T, SATIENNAM W, et al. Comparative study of real-world driving cycles, energy consumption, and CO2 emissions of electric and gasoline motorcycles driving in a congested urban corridor[J]. Sustainable Cities and Society,2019,45:619-627. doi: 10.1016/j.scs.2018.12.031
    [24] 张岳秋, 李博, 马居宇, 等. 重型半挂车CHTC-TT和C-WTVC工况能耗排放比对研究[J]. 小型内燃机与车辆技术,2023,52(2):62-66.

    ZHANG Y Q, LI B, MA J Y, et al. Study on energy consumption and emission of heavy tractor under CHTC-TT and C-WTVC working conditions[J]. Small Internal Combustion Engine and Vehicle Technique,2023,52(2):62-66.
    [25] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 重型商用车辆燃料消耗量测量方法: GB/T 27840—2011[S]. 北京: 中国标准出版社, 2012.
    [26] 国家市场监督管理总局. 重型商用车燃料消耗量测量方法: GB/T 27840—2018[S]. 北京: 中国标准出版社, 2019.
    [27] 可尚基, 钱晓东. 基于AVL CRUISE的客车经济性仿真分析及验证[J]. 客车技术与研究,2021,43(2):32-34.

    KE S J, QIAN X D. Simulation analysis and verification of bus economy based on AVL CRUISE[J]. Bus & Coach Technology and Research,2021,43(2):32-34.
    [28] 郁逸桢, 郑长江. 基于Cruise 的整车动力性和经济性分析[J]. 贵州大学学报(自然科学版),2021,38(1):98-103.

    YU Y Z, ZHENG C J. Analysis of vehicle power and economy based on cruise[J]. Journal of Guizhou University (Natural Sciences),2021,38(1):98-103.
    [29] KOMNOS D, BROEKAERT S, ZACHAROF N, et al. A method for quantifying the resistances of light and heavy-duty vehicles under in-use conditions[J]. Energy Conversion and Management,2024,299:117810. doi: 10.1016/j.enconman.2023.117810
    [30] ZACHAROF N, ÖZENER O, BROEKAERT S, et al. The impact of bus passenger occupancy, heating ventilation and air conditioning systems on energy consumption and CO2 emissions[J]. Energy,2023,272:127155. □ doi: 10.1016/j.energy.2023.127155
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  21
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 录用日期:  2024-05-20
  • 修回日期:  2024-05-14

目录

    /

    返回文章
    返回