Sensitivity analysis of heavy vehicle CO2 emission based on VECTO software
-
摘要:
为了研究重型车特性参数对CO2排放的影响,以中国厢式货车、不同运行工况下的欧洲C2级货车和欧洲城际客车为例,采用VECTO软件测算车辆的滚阻系数、风阻系数、轮胎动力学半径、附件最大总功率、主减速器和变速箱机械效率及转矩损失等参数对CO2排放的影响,分析不同参数变化对CO2排放测算结果变动的敏感性。结果表明,滚阻系数、风阻系数、附件总功率、主减速器和变速箱各挡位转矩损失参数变动幅度与车辆CO2比排放变动幅度基本呈正线性相关,各参数20%的变动幅度最大将引起4.4%、7.2%、1.9%、1.2%和1.4%的CO2比排放变动幅度;轮胎动力学半径变动幅度对CO2的影响为非线性关系,负的轮胎动力学半径变动幅度引起的CO2排放变动幅度要高于正的变动幅度,−20%的轮胎动力学半径变动幅度最大将引起7.1%左右的CO2比排放变动幅度;主减速器和变速箱各挡位的机械效率变动幅度与CO2比排放变动幅度呈负线性相关,−2.8%左右的机械效率偏差引起2.3%左右的CO2比排放变动幅度。研究结果可为重型车节能降碳改进设计提供参考。
Abstract:To study the influence of heavy-duty vehicle characteristic parameters on CO2 emission, the effects of rolling resistance coefficient, wind resistance coefficient, tire dynamic radius, accessory maximum total power, mechanical efficiency and torque loss of main retarder and gearbox on CO2 emissions were calculated by VECTO software, taking Chinese van, European C2 truck under different operating conditions and European intercity bus as examples. The sensitivity of different parameters to the variation of CO2 emission was analyzed. The results showed that the variation range of parameters such as rolling resistance coefficient, wind resistance coefficient, total accessories power, and torque loss in each gear of main retarder and gearbox had a positive linear correlation with the variation range of vehicle CO2 specific emission. The variation of 20% of each parameter would cause a maximum variation of 4.4%, 7.2%, 1.9%, 1.2% and 1.4% of CO2 specific emissions, respectively. The influence of tire dynamic radius on CO2 was nonlinear. The change range of CO2 emission caused by negative tire dynamic radius variation was higher than that caused by positive tire dynamic radius variation; the −20% tire dynamic radius change range would cause about 7.1% change range of CO2 specific emission. There was a negative linear correlation between the variation of mechanical efficiency of each gear of the main retarder and gearbox and the variation of CO2 specific emission, and the variation of CO2 emission caused by the mechanical efficiency deviation of −2.8% was about 2.3%. The research results can provide a reference for carrying out the design of the energy-saving and carbon-reducing improvement of heavy-duty vehicles.
-
Key words:
- heavy-duty vehicles /
- VECTO software /
- CO2 emission /
- sensitivity analysis /
- characteristic parameters
-
表 1 模拟所选车辆信息和4种模拟情形
Table 1. Vehicles information and four scenarios for simulation
车辆
类型模拟使用的整车质量/kg 允许的最大
满载质量/kg车轴
配置车轮
总数驱动
轮数发动机
排量/L发动机额定
功率/kW模拟使用
驾驶循环国产厢式货车 9 120 18 000 4$ \times $2 6 4 7.79 221 C-WTVC循环 欧洲C2级货车 4 670+3 020(负载)+1 900(挂车) 11 990 4$ \times $2 5 2 6.87 175 VECTO中自带Region循环 欧洲C2级货车 4 670+3 020(负载)+1 900(挂车) 11 990 4$ \times $2 5 2 6.87 175 VECTO中自带Urban循环 欧洲城际客车 14 800+5 170(负载) 25 000 6$ \times $2 8 4 7.70 250 VECTO中自带InterUrban循环 表 2 驾驶循环特征参数对比
Table 2. Comparison of driving cycle characteristic parameters
驾驶循环 运行时间/s 怠速时间/s 最高速度/
(km/h)平均速度/
(km/h)C-WTVC循环 1 800 186 87.8 40.997 Region循环 25 945 114 85.0 74.277 Urban循环 28 429 639 85.0 51.558 InterUrban循环 125 210.8 1 708.8 85.0 39.917 表 3 车辆特性参数初始设置
Table 3. Original vehicle characteristic parameters setup
车辆类型 滚阻系数 风阻系数/m2 轮胎动力学半径/mm 附件最大总功率/W 主减速器机械效率或功率损失 各挡位机械效率或转矩损失 国产厢式货车 0.005 5 5.200 507 5 000 0.977 0.977 欧洲C2级货车 0.006 5 4.830 421 3 540 功率损失MAP图 功率损失MAP图 欧洲城际客车 0.006 5 4.115 507 5 000 功率损失MAP图 功率损失MAP图 -
[1] 马洪运, 周磊, 张雪琦, 等. 人工湿地温室气体排放研究进展与减污降碳优化[J]. 环境工程技术学报,2023,13(6):2043-2052.MA H Y, ZHOU L, ZHANG X Q, et al. Research progress of greenhouse gas emissions and optimization of pollution removal and carbon reduction in constructed wetland[J]. Journal of Environmental Engineering Technology,2023,13(6):2043-2052. [2] JAHANGER A, HOSSAIN M R, AWAN A. Exploring the critical nexus among energy mineral, globalization, and CO2 emissions in NAFTA: what's the forum's response amid asymmetries[J]. Resources Policy,2024,90:104825. doi: 10.1016/j.resourpol.2024.104825 [3] 罗良文, 雷朱家华. 中国碳市场政策的减污降碳协同效应[J]. 资源科学,2024,46(1):53-68.LUO L W, LEI Z. Synergetic effect of China's carbon market policies on pollution reduction and carbon reduction[J]. Resources Science,2024,46(1):53-68. [4] 张剑, 刘景洋, 董莉, 等. 中国能源消费CO2排放的影响因素及情景分析[J]. 环境工程技术学报,2023,13(1):1-78.ZHANG J, LIU J Y, DONG L, et al. Influencing factors and scenario analysis of China's CO2 emission of energy consumption[J]. Journal of Environmental Engineering Technology,2023,13(1):1-78. [5] 中国政府网. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. (2021-10-26)[2024-01-29]. https://www.gov.cn/zhengce/content/2021-10/26/content_56 44984.htm. [6] ZHI G R, DU J H, CHEN A Z, et al. Progression of an emission inventory of China integrating CO2 with air pollutants: a chance to learn the influence of development on emissions[J]. Atmospheric Environment,2024,316:120184. doi: 10.1016/j.atmosenv.2023.120184 [7] XU Y L, LIU Z Y, XUE W B, et al. Identification of on-road vehicle CO2 emission pattern in China: a study based on a high-resolution emission inventory[J]. Resources, Conservation & Recycling, 2021, 175: 105891. [8] 黄志辉, 纪亮, 尹洁, 等. 中国道路交通二氧化碳排放达峰路径研究[J]. 环境科学研究,2022,35(2):385-393.HUANG Z H, JI L, YIN J, et al. Peak pathway of China's road traffic carbon emissions[J]. Research of Environmental Sciences,2022,35(2):385-393. [9] BREED A K, SPETH D, PLÖTZ P. CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe[J]. Energy Policy,2021,159:112640. doi: 10.1016/j.enpol.2021.112640 [10] FONTARAS G, REXEIS M, DILARA P, et al. The development of a simulation tool for monitoring heavy-duty vehicle CO2 emissions and fuel consumption in Europe[R]. New York: SAE international, 2013. [11] PETTERSSON P, JACOBSON B, BRUZELIUS F, et al. Intrinsic differences between backward and forward vehicle simulation models[J]. IFAC-PapersOnLine,2020,53(2):14292-14299. doi: 10.1016/j.ifacol.2020.12.1368 [12] FONTARAS G, GRIGORATOS T, SAVVIDIS D, et al. An experimental evaluation of the methodology proposed for the monitoring and certification of CO2 emissions from heavy-duty vehicles in Europe[J]. Energy,2016,102:354-364. doi: 10.1016/j.energy.2016.02.076 [13] ZACHAROF N, FONTARAS G, GIUFFO B, et al. An estimation of heavy-duty vehicle fleet CO2 emissions based on sampled data[J]. Transportation Research Part D,2021,94:102784. doi: 10.1016/j.trd.2021.102784 [14] DJORDJEVIC B, GHOSH B. Estimation of emissions and fuel consumption from Irish HDVs using VECTO tool[J]. Transportation Research Procedia,2023,72:3825-3831. doi: 10.1016/j.trpro.2023.11.505 [15] SEO J, PARK S. Developing an official program to calculate heavy-duty vehicles CO2 emissions in Korea[J]. Transportation Research Part D: Transport and Environment,2023,120:103774. doi: 10.1016/j.trd.2023.103774 [16] European Union. Regulation (EU) 2018/956 of the European parliament and of the Council of 28 June 2018 on the monitoring and reporting of CO2 emissions from and fuel consumption of new heavy-duty vehicles[S]. Belgium: European Union, 2018. [17] European Union. Setting CO2 emission performance standards for new heavy-duty vehicles and amending Regulations (EC) No 595/2009 and (EU) 2018/956 of the European parliament and of the Council and Council Directive 96/53/EC[S]. Belgium: European Union, 2019. [18] 汪晓伟, 李粟, 吴琳琳, 等. 基于底盘测功机、EIL和VECTO的重型商用车C-WTVC循环下油耗对比分析[C]//中国汽车工程学会. 2021年中国汽车工程学会年会论文集. 北京: 中国汽车工程学会, 2021: 1721-1725. [19] 施佳能, 李粟, 张佑源, 等. 基于VECTO的商用车中国工况碳排放仿真[J]. 内燃机与动力装置,2022,39(3):73-80.SHI J N, LI S, ZHANG Y Y, et al. CO2 emission simulation of commercial vehicle under CHTC based on VECTO software[J]. Internal Combustion Engine & Powerplant,2022,39(3):73-80. [20] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 重型商用车辆燃料消耗量限值: GB 30510—2014[S]. 北京: 中国标准出版社, 2014. [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 重型商用车辆燃料消耗量限值: GB 30510—2018[S]. 北京: 中国标准出版社, 2018. [22] 工业和信息化部. 公开征求《汽车软件升级通用技术要求》等九项强制性国家标准的意见[EB/OL]. (2022-06-17)[2024-03-20]. https://www.miit.gov.cn/jgsj/zbys/qcgy/art/2022/art_c1878e9460a74860a37bd3964436116d.html. [23] KOOSSALAPEEROM T, SATIENNAM T, SATIENNAM W, et al. Comparative study of real-world driving cycles, energy consumption, and CO2 emissions of electric and gasoline motorcycles driving in a congested urban corridor[J]. Sustainable Cities and Society,2019,45:619-627. doi: 10.1016/j.scs.2018.12.031 [24] 张岳秋, 李博, 马居宇, 等. 重型半挂车CHTC-TT和C-WTVC工况能耗排放比对研究[J]. 小型内燃机与车辆技术,2023,52(2):62-66.ZHANG Y Q, LI B, MA J Y, et al. Study on energy consumption and emission of heavy tractor under CHTC-TT and C-WTVC working conditions[J]. Small Internal Combustion Engine and Vehicle Technique,2023,52(2):62-66. [25] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 重型商用车辆燃料消耗量测量方法: GB/T 27840—2011[S]. 北京: 中国标准出版社, 2012. [26] 国家市场监督管理总局. 重型商用车燃料消耗量测量方法: GB/T 27840—2018[S]. 北京: 中国标准出版社, 2019. [27] 可尚基, 钱晓东. 基于AVL CRUISE的客车经济性仿真分析及验证[J]. 客车技术与研究,2021,43(2):32-34.KE S J, QIAN X D. Simulation analysis and verification of bus economy based on AVL CRUISE[J]. Bus & Coach Technology and Research,2021,43(2):32-34. [28] 郁逸桢, 郑长江. 基于Cruise 的整车动力性和经济性分析[J]. 贵州大学学报(自然科学版),2021,38(1):98-103.YU Y Z, ZHENG C J. Analysis of vehicle power and economy based on cruise[J]. Journal of Guizhou University (Natural Sciences),2021,38(1):98-103. [29] KOMNOS D, BROEKAERT S, ZACHAROF N, et al. A method for quantifying the resistances of light and heavy-duty vehicles under in-use conditions[J]. Energy Conversion and Management,2024,299:117810. doi: 10.1016/j.enconman.2023.117810 [30] ZACHAROF N, ÖZENER O, BROEKAERT S, et al. The impact of bus passenger occupancy, heating ventilation and air conditioning systems on energy consumption and CO2 emissions[J]. Energy,2023,272:127155. □ doi: 10.1016/j.energy.2023.127155