留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性粉煤灰净化酸性矿山废水污染机理研究

王宪革 赵子千 沙浩群 何小松

王宪革,赵子千,沙浩群,等.改性粉煤灰净化酸性矿山废水污染机理研究[J].环境工程技术学报,2024,14(5):1635-1645 doi: 10.12153/j.issn.1674-991X.20240130
引用本文: 王宪革,赵子千,沙浩群,等.改性粉煤灰净化酸性矿山废水污染机理研究[J].环境工程技术学报,2024,14(5):1635-1645 doi: 10.12153/j.issn.1674-991X.20240130
WANG X G,ZHAO Z Q,SHA H Q,et al.Research on the mechanism of modified fly ash treatment of acid mine drainage pollution[J].Journal of Environmental Engineering Technology,2024,14(5):1635-1645 doi: 10.12153/j.issn.1674-991X.20240130
Citation: WANG X G,ZHAO Z Q,SHA H Q,et al.Research on the mechanism of modified fly ash treatment of acid mine drainage pollution[J].Journal of Environmental Engineering Technology,2024,14(5):1635-1645 doi: 10.12153/j.issn.1674-991X.20240130

改性粉煤灰净化酸性矿山废水污染机理研究

doi: 10.12153/j.issn.1674-991X.20240130
基金项目: 国家重点研发计划项目(2020YFC1806503)
详细信息
    作者简介:

    王宪革(1999—),男,硕士研究生,主要研究方向为固体废物处理处置及资源化,wxg0399@163.com

    通讯作者:

    何小松(1982—),男,研究员,博士,主要从事固体废物处理处置技术研究,hexs82@126.com

  • 中图分类号: X75

Research on the mechanism of modified fly ash treatment of acid mine drainage pollution

  • 摘要:

    煤矸石堆存过程中产生的酸性矿山废水(acid mine drainage,AMD)对周边水环境具有严重污染风险。基于“以废治废”理念,选择煤炭燃烧产生的粉煤灰开展了去除AMD中污染物的研究。针对粉煤灰原灰处理效果不佳的现状,对比了不同改性条件下的粉煤灰对AMD中污染物的去除效果,筛选出了去除效果最佳的粉煤灰改性材料,并从微观层面解析了粉煤灰改性材料去除污染物过程中的作用机理。结果显示:经Ca(OH)2助熔焙烧改性粉煤灰处理后,模拟AMD废水中的Fe、Mn含量由100 mg/L降至低于1 mg/L,污染物去除率达99%。Ca(OH)2助熔焙烧改性粉煤灰对Fe、Mn的吸附过程主要为单层化学吸附,在0~2 h内吸附接近平衡。此外,Ca(OH)2助熔焙烧改性增加了粉煤灰表面粗糙度和孔隙数量,并在表面形成六面体晶相结构。同时,Ca(OH)2助熔焙烧改性过程活化了粉煤灰颗粒表面Si和Al元素,提高了其Zeta电位,减少了游离羟基,增加了固定羟基,从而增强了其对污染物的吸附能力。Ca(OH)2助熔焙烧改性显著提高了粉煤灰对AMD中污染物的去除率,为粉煤灰治理AMD提供了材料与方法依据。

     

  • 图  1  不同材料和不同改性粉煤灰对AMD模拟废水的处理效果

    注:焙烧改性指焙烧改性粉煤灰,Na(OH)改性、Ca(OH)2改性分别指Na(OH)助熔焙烧改性、Ca(OH)2助熔焙烧改性粉煤灰。

    Figure  1.  Effectiveness of different materials and different modified fly ashes on AMD simulated wastewater treatment

    图  2  粉煤灰与Ca(OH)2焙烧改性粉煤灰对废水中Fe、Mn的等温吸附曲线

    Figure  2.  Isothermal adsorption curves of Fe and Mn in wastewater by fly ash and Ca(OH)2 flux-roasted modified fly ash

    图  3  粉煤灰和Ca(OH)2助熔焙烧改性粉煤灰对Fe、Mn的吸附效果及等温模型拟合曲线

    Figure  3.  Adsorption effects of fly ash and Ca(OH)2 flux-roasted modified fly ash on Fe and Mn and isothermal model fitting curves

    图  4  粉煤灰和Ca(OH)2焙烧改性粉煤灰对Mn和Fe的吸附动力学拟合曲线

    Figure  4.  Fitting curves of adsorption kinetics of fly ash and Ca (OH)2 flux-roasted modified fly ash on Mn and Fe

    图  5  粉煤灰和Ca(OH)2助熔焙烧改性粉煤灰对Fe、Mn的动力学吸附拟合曲线

    Figure  5.  Fitted curves of kinetic adsorption of fly ash and Ca(OH)2 flux-roasted modified fly ash on Fe and Mn

    图  6  粉煤灰、焙烧改性粉煤灰以及Ca(OH)2助熔焙烧改性粉煤灰3种材料的SEM图

    Figure  6.  SEM images of three materials: fly ash, roasted modified fly ash and Ca(OH)2 flux-roasted modified fly ash

    图  7  粉煤灰、焙烧粉煤灰以及Ca(OH)2助熔焙烧改性粉煤灰氮吸附脱附曲线

    Figure  7.  Nitrogen adsorption desorption of fly ash, roasted fly ash and Ca(OH)2 flux-roasted modified fly ash

    图  8  经不同处理后粉煤灰的孔径及Zeta电位分布

    Figure  8.  Pore size and Zeta potential distribution of fly ash after different treatments

    图  9  不同改性条件和不同应用条件下粉煤灰的傅里叶红外光谱图

    Figure  9.  Fourier infrared spectra of fly ash under different modification conditions and different application conditions

    图  10  粉煤灰、焙烧改性粉煤灰及Ca(OH)2助熔焙烧改性粉煤灰的XRD谱图

    Figure  10.  XRD spectra of fly ash, roasted modified fly ash and Ca(OH)2 flux-roasted modified fly ash

    表  1  粉煤灰、焙烧改性粉煤灰和Ca(OH)2助熔焙烧改性粉煤灰比表面积

    Table  1.   Specific surface areas of fly ash, roasted modified fly ash and Ca(OH)2 flux-roasted modified fly ash

    材料比表面积/(m2/g)
    粉煤灰0.713 2
    焙烧改性粉煤灰0.556 5
    Ca(OH)2改性粉煤灰10.881 3
    下载: 导出CSV
  • [1] 何振嘉. 矸石山对生态环境的影响及对策研究[J]. 煤炭技术,2020,39(3):37-38.

    HE Z J. Study on influence of waste rock hill on ecological environment and countermeasures[J]. Coal Technology,2020,39(3):37-38.
    [2] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R/OL]. [2024-02-25]. http://www.360doc.com/content/23/1231/20/77611_1109432197.shtml.
    [3] 谷庆宝. 煤矸石的组成及综合利用[J]. 中国矿业,1997,6(5):14-16.

    GU Q B. Composition and utilization of gangue in China[J]. China Mining Magazine,1997,6(5):14-16.
    [4] 杨越. 我国煤矸石堆存现状及其大宗量综合利用途径[J]. 中国资源综合利用,2014,32(6):18-22.

    YANG Y. Coal gangue stacked and its comprehensive utilization[J]. China Resources Comprehensive Utilization,2014,32(6):18-22.
    [5] RODRÍGUEZ-GALÁN M, BAENA-MORENO F M, VÁZQUEZ S, et al. Remediation of acid mine drainage[J]. Environmental Chemistry Letters,2019,17(4):1529-1538. doi: 10.1007/s10311-019-00894-w
    [6] NÁDUDVARI Á, KOZIELSKA B, ABRAMOWICZ A, et al. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland)[J]. Journal of Hazardous Materials,2021,412:125244. doi: 10.1016/j.jhazmat.2021.125244
    [7] ZHONG C M, XU Z L, FANG X H, et al. Treatment of acid mine drainage (AMD) by ultra-low-pressure reverse osmosis and nanofiltration[J]. Environmental Engineering Science,2007,24(9):1297-1306. doi: 10.1089/ees.2006.0245
    [8] AL-ZOUBI H, RIEGER A, STEINBERGER P, et al. Optimization study for treatment of acid mine drainage using membrane technology[J]. Separation Science and Technology,2010,45(14):2004-2016. doi: 10.1080/01496395.2010.480963
    [9] CHAI G D, WANG D Q, ZHANG Y T, et al. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: performance dynamics and microbial community comparison[J]. Journal of Environmental Management,2023,330:117148. doi: 10.1016/j.jenvman.2022.117148
    [10] DI J Z, JIANG Y Y, WANG M J, et al. Preparation of biologically activated lignite immobilized SRB particles and their AMD treatment characteristics[J]. Scientific Reports,2022,12(1):3964. doi: 10.1038/s41598-022-08029-y
    [11] WU A J, ZHANG Y B, ZHAO X H, et al. Experimental research on the remediation ability of four wetland plants on acid mine drainage[J]. Sustainability,2022,14(6):3655. doi: 10.3390/su14063655
    [12] 彭映林, 仪丽清, 郑雅杰, 等. 粉煤灰处理酸性矿山废水的研究[J]. 环境科学与技术,2016,39(增刊1):280-284.

    PENG Y L, YI L Q, ZHENG Y J, et al. Treatment of acid mine drainage using fly ash[J]. Environmental Science & Technology,2016,39(Suppl 1):280-284.
    [13] MOON G D, OH S, CHOI Y C. Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar[J]. Construction and Building Materials,2016,124:1072-1080. doi: 10.1016/j.conbuildmat.2016.08.148
    [14] 吴海霞, 吴小卉, 孟棒棒, 等. 黏土与粉煤灰吸附农村生活垃圾渗滤液的效能及机理[J]. 环境工程技术学报,2019,9(5):587-596.

    WU H X, WU X H, MENG B B, et al. Research on adsorption efficiency and mechanism of clay and coal fly ash for rural domestic waste leachate[J]. Journal of Environmental Engineering Technology,2019,9(5):587-596.
    [15] 贾含帅, 刘汉湖, 于常武, 等. 粉煤灰对重金属钼的吸附效果及其影响因素[J]. 环境工程技术学报,2012,2(1):18-22.

    JIA H S, LIU H H, YU C W, et al. Study on adsorptive effect and influencing factors of fly ash on heavy metal molybdenum[J]. Journal of Environmental Engineering Technology,2012,2(1):18-22.
    [16] SAHOO P K, TRIPATHY S, PANIGRAHI M K, et al. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage[J]. Applied Water Science,2013,3(3):567-576. doi: 10.1007/s13201-013-0113-2
    [17] ZHAO S X, CHEN Z L, WANG B Y, et al. Cr(Ⅵ) removal using different reducing agents combined with fly ash leachate: a comparative study of their efficiency and potential mechanisms[J]. Chemosphere,2018,213:172-181. doi: 10.1016/j.chemosphere.2018.08.143
    [18] LI H, DAI M W, DAI S L, et al. Methylene blue adsorption properties of mechanochemistry modified coal fly ash[J]. Human and Ecological Risk Assessment,2018,24(8):2133-2141. doi: 10.1080/10807039.2018.1440527
    [19] LI J P, GAN J H, WANG G K, et al. Research on adsorbent using modified fly ash for campus domestic sewage treatment[J]. MATEC Web of Conferences,2016,67:07003. doi: 10.1051/matecconf/20166707003
    [20] WANG N N, SUN X Y, ZHAO Q, et al. Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: system parameters, kinetics, and proposed mechanism[J]. Chemical Engineering Journal,2021,406:126734. doi: 10.1016/j.cej.2020.126734
    [21] VISA M, BOGATU C, DUTA A C. Tungsten oxide: fly ash oxide composites in adsorption and photocatalysis[J]. Journal of Hazardous Materials,2015,289:244-256. doi: 10.1016/j.jhazmat.2015.01.053
    [22] MUSHTAQ F, ZAHID M, BHATTI I A, et al. Possible applications of coal fly ash in wastewater treatment[J]. Journal of Environmental Management,2019,240:27-46.
    [23] 李文清, 邹萍. 粉煤灰吸附废水中重金属的研究现状与进展[J]. 工业水处理,2022,42(9):46-55.

    LI W Q, ZOU P. Research status and progress of fly ash adsorption of heavy metals in wastewater[J]. Industrial Water Treatment,2022,42(9):46-55.
    [24] RADZI N M, SOFIAN A H, JAMARI S S. Studies on the modification of fly ash structure with alkaline pre-treatment as a green composite flame retardant filler[J]. IOP Conference Series: Materials Science and Engineering,2021,1195(1):012015. doi: 10.1088/1757-899X/1195/1/012015
    [25] 马卓. 改性粉煤灰吸附F和Hg2+的研究[D]. 北京: 华北电力大学, 2009.
    [26] 赵子千, 沙浩群, 黄赳, 等. 煤矸石堆场地下水污染特征及成因研究[J]. 环境工程技术学报,2023,13(4):1604-1613.

    ZHAO Z Q, SHA H Q, HUANG J, et al. Study on the characteristics and causes of groundwater pollution in coal gangue dumps[J]. Journal of Environmental Engineering Technology,2023,13(4):1604-1613.
    [27] 辛在军, 王玺洋, 李亮, 等. 固定化SRB包埋颗粒组分优选及处理含 ${\mathrm{SO}}_4^{2-} $废水效果研究[J]. 工业水处理,2024,44(3):112-119.

    XIN Z J, WANG X Y, LI L, et al. Components optimization of immobilized SRB-embeded particles and study on the treatment effect of sulfate-containing wastewater[J]. Industrial Water Treatment,2024,44(3):112-119.
    [28] POZO G, PONGY S, KELLER J, et al. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage[J]. Water Research,2017,126:411-420. doi: 10.1016/j.watres.2017.09.058
    [29] 胡璇, 匡玉云, 石磊. 铬酸钡分光光度法测定高硫铝土矿中硫酸根[J]. 冶金分析,2018,38(12):59-63.

    HU X, KUANG Y Y, SHI L. Determination of sulfate in high sulfur bauxite by Barium chromate spectrophotometry[J]. Metallurgical Analysis,2018,38(12):59-63.
    [30] 侯世辉, 王小明, 党正, 等. 不同粒度构造煤的孔结构特征研究[J]. 能源与环保,2023,45(12):142-146.

    HOU S H, WANG X M, DANG Z, et al. Research on pore structure characterization of tectonic coal with different particle sizes[J]. China Energy and Environmental Protection,2023,45(12):142-146.
    [31] 杨毅, 高敏轩, 陈元, 等. 电厂粉煤灰、炉渣和污泥复合陶粒对低浓度Pb2+的吸附特性[J]. 环境科学研究,2024,37(2):407-414.

    YANG Y, GAO M X, CHEN Y, et al. Adsorption characteristics of power plant fly ash, slag and sludge composite ceramics for low concentration Pb2+[J]. Research of Environmental Sciences,2024,37(2):407-414.
    [32] 严博文, 叶长文, 龚锐, 等. 响应曲面分析优化改性粉煤灰漂珠对水中氟的吸附性能及机理研究[J]. 环境科学研究,2019,32(4):709-717.

    YAN B W, YE C W, GONG R, et al. Optimization study of adsorption parameters for removal of fluoride by fly ash cenospheres modified with calcium using response surface methodology[J]. Research of Environmental Sciences,2019,32(4):709-717.
    [33] 李萌晓, 赵林, 陈达颖, 等. 硫酸盐还原菌处理酸性矿山废水的研究进展[J]. 应用化工,2023,52(12):3439-3443.

    LI M X, ZHAO L, CHEN D Y, et al. Research progress of acid mine wastewater treatment by sulfate-reducing bacteria[J]. Applied Chemical Industry,2023,52(12):3439-3443.
    [34] MONDAL P, MAJUMDER C B, MOHANTY B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments[J]. Journal of Hazardous Materials,2006,137(1):464-479. doi: 10.1016/j.jhazmat.2006.02.023
    [35] 韩非, 张彦平, 李敏, 等. 热改性粉煤灰对水中Cr(Ⅵ)的吸附性能[J]. 工业水处理,2016,36(4):46-49.

    HAN F, ZHANG Y P, LI M, et al. Adsorption capacity of thermal modified fly ash for Cr(Ⅵ) from water[J]. Industrial Water Treatment,2016,36(4):46-49.
    [36] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57(4):603-619. doi: 10.1351/pac198557040603
    [37] 陈俊涛, 丁淑芳, 白春华, 等. 焙烧对粉煤灰孔径分布及吸附性能的影响[J]. 黑龙江科技学院学报,2011,21(5):357-359.

    CHEN J T, DING S F, BAI C H, et al. Effect of roasting on pore distribution and adsorption performance of fly ash[J]. Journal of Heilongjiang Institute of Science and Technology,2011,21(5):357-359.
    [38] THAKRE D, RAYALU S, KAWADE R, et al. Magnesium incorporated bentonite clay for defluoridation of drinking water[J]. Journal of Hazardous Materials,2010,180(1/2/3):122-130.
    [39] 秦兰, 马欢, 刘晓晨. NaOH改性粉煤灰吸附溶液中Cu2+的研究[J]. 广州化工,2022,50(14):85-88.

    QIN L, MA H, LIU X C. Adsorption of Cu2+ in solution by NaOH modified fly ash[J]. Guangzhou Chemical Industry,2022,50(14):85-88.
    [40] 陈友治, 钟浩轩, 殷伟淞, 等. 钙硅比对水化硅酸钙结构、Zeta电势及减水剂吸附性能的影响分析[J]. 硅酸盐通报,2020,39(6):1798-1804.

    CHEN Y Z, ZHONG H X, YIN W S, et al. Effect of calcium-silicon ratio of calcium silicate hydrate on its structure, Zeta potential and adsorption capacity of superplasticizer[J]. Bulletin of the Chinese Ceramic Society,2020,39(6):1798-1804.
    [41] 朱天孝, 徐林冲, 朱勇, 等. CaCO3@SiO2的制备及其壳层SiO2生长动力学分析[J]. 中国粉体技术,2022,28(4):43-53.

    ZHU T X, XU L C, ZHU Y, et al. Preparation of CaCO3@SiO2 and analysis of growth kinetics of SiO2 shell[J]. China Powder Science and Technology,2022,28(4):43-53.
    [42] 吴子豪, 付振宇, 方瑞祥, 等. HTPB包覆AlH3的热分析动力学研究[J]. 化工新型材料,2022,50(增刊):307-311.

    WU Z H, FU Z Y, FANG Y X, et al. Thermal analysis kinetics of AIH3 coated with HTPB[J]. New Chemical Materials,2022,50(Suppl):307-311.
    [43] 温鹏. 改性粉煤灰处理酸性矿坑废水的研究[D]. 北京: 中国地质大学(北京), 2021.
    [44] LIU C, LIU X, CHEN X, et al. Preparation of spherical calcium carbonate by high-gravity reaction crystallization carbonization[J]. Chemical Industry and Engineering Progress,2021,40(11):6323-6331. ◇
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  22
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 录用日期:  2024-05-15
  • 修回日期:  2024-04-30

目录

    /

    返回文章
    返回