Research on the mechanism of modified fly ash treatment of acid mine drainage pollution
-
摘要:
煤矸石堆存过程中产生的酸性矿山废水(acid mine drainage,AMD)对周边水环境具有严重污染风险。基于“以废治废”理念,选择煤炭燃烧产生的粉煤灰开展了去除AMD中污染物的研究。针对粉煤灰原灰处理效果不佳的现状,对比了不同改性条件下的粉煤灰对AMD中污染物的去除效果,筛选出了去除效果最佳的粉煤灰改性材料,并从微观层面解析了粉煤灰改性材料去除污染物过程中的作用机理。结果显示:经Ca(OH)2助熔焙烧改性粉煤灰处理后,模拟AMD废水中的Fe、Mn含量由100 mg/L降至低于1 mg/L,污染物去除率达99%。Ca(OH)2助熔焙烧改性粉煤灰对Fe、Mn的吸附过程主要为单层化学吸附,在0~2 h内吸附接近平衡。此外,Ca(OH)2助熔焙烧改性增加了粉煤灰表面粗糙度和孔隙数量,并在表面形成六面体晶相结构。同时,Ca(OH)2助熔焙烧改性过程活化了粉煤灰颗粒表面Si和Al元素,提高了其Zeta电位,减少了游离羟基,增加了固定羟基,从而增强了其对污染物的吸附能力。Ca(OH)2助熔焙烧改性显著提高了粉煤灰对AMD中污染物的去除率,为粉煤灰治理AMD提供了材料与方法依据。
-
关键词:
- 酸性矿山废水 (AMD) /
- 粉煤灰 /
- 改性 /
- 吸附
Abstract:Acid mine drainage (AMD) generated in the process of coal gangue storage poses a serious pollution risk to the surrounding water environment. Based on the concept of "waste to waste", fly ash from coal combustion was selected for the study of contaminant removal in AMD. In response to the poor treatment effect of fly ash (raw ash), we compared the removal effect of fly ash under different modification conditions on the pollutants in AMD, screened out the fly ash-modified materials with the best removal effect, and analyzed the mechanism of the fly ash-modified materials in the process of pollutant removal at the microscopic level. The results showed that the Fe and Mn contents in the simulated AMD wastewater were reduced from 100 mg/L to less than 1 mg/L with 99% pollutant removal after treatment by Ca(OH)2 flux roasting modified fly ash. The adsorption of Fe and Mn by Ca(OH)2 flux-roasted modified fly ash was mainly monolayer chemisorption, and the adsorption was close to the equilibrium in 0-2 h. In addition, Ca(OH)2 flux roasting modification increased fly ash surface roughness and pore number, and formed a hexahedral crystalline phase structure on the surface. Meanwhile, Ca(OH)2 flux roasting activated Si and Al elements on the surface of the fly ash particles, increased their Zeta potential, reduced the free hydroxyl groups, and increased the fixed hydroxyl groups, which enhanced their adsorption capacity. The Ca(OH)2 flux roasting modification significantly improved the removal efficiency of pollutants in AMD by fly ash, which provided a material and methodological basis for treating AMD by fly ash.
-
Key words:
- acid mine drainage (AMD) /
- fly ash /
- modification /
- adsorption
-
表 1 粉煤灰、焙烧改性粉煤灰和Ca(OH)2助熔焙烧改性粉煤灰比表面积
Table 1. Specific surface areas of fly ash, roasted modified fly ash and Ca(OH)2 flux-roasted modified fly ash
材料 比表面积/(m2/g) 粉煤灰 0.713 2 焙烧改性粉煤灰 0.556 5 Ca(OH)2改性粉煤灰 10.881 3 -
[1] 何振嘉. 矸石山对生态环境的影响及对策研究[J]. 煤炭技术,2020,39(3):37-38.HE Z J. Study on influence of waste rock hill on ecological environment and countermeasures[J]. Coal Technology,2020,39(3):37-38. [2] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R/OL]. [2024-02-25]. http://www.360doc.com/content/23/1231/20/77611_1109432197.shtml. [3] 谷庆宝. 煤矸石的组成及综合利用[J]. 中国矿业,1997,6(5):14-16.GU Q B. Composition and utilization of gangue in China[J]. China Mining Magazine,1997,6(5):14-16. [4] 杨越. 我国煤矸石堆存现状及其大宗量综合利用途径[J]. 中国资源综合利用,2014,32(6):18-22.YANG Y. Coal gangue stacked and its comprehensive utilization[J]. China Resources Comprehensive Utilization,2014,32(6):18-22. [5] RODRÍGUEZ-GALÁN M, BAENA-MORENO F M, VÁZQUEZ S, et al. Remediation of acid mine drainage[J]. Environmental Chemistry Letters,2019,17(4):1529-1538. doi: 10.1007/s10311-019-00894-w [6] NÁDUDVARI Á, KOZIELSKA B, ABRAMOWICZ A, et al. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland)[J]. Journal of Hazardous Materials,2021,412:125244. doi: 10.1016/j.jhazmat.2021.125244 [7] ZHONG C M, XU Z L, FANG X H, et al. Treatment of acid mine drainage (AMD) by ultra-low-pressure reverse osmosis and nanofiltration[J]. Environmental Engineering Science,2007,24(9):1297-1306. doi: 10.1089/ees.2006.0245 [8] AL-ZOUBI H, RIEGER A, STEINBERGER P, et al. Optimization study for treatment of acid mine drainage using membrane technology[J]. Separation Science and Technology,2010,45(14):2004-2016. doi: 10.1080/01496395.2010.480963 [9] CHAI G D, WANG D Q, ZHANG Y T, et al. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: performance dynamics and microbial community comparison[J]. Journal of Environmental Management,2023,330:117148. doi: 10.1016/j.jenvman.2022.117148 [10] DI J Z, JIANG Y Y, WANG M J, et al. Preparation of biologically activated lignite immobilized SRB particles and their AMD treatment characteristics[J]. Scientific Reports,2022,12(1):3964. doi: 10.1038/s41598-022-08029-y [11] WU A J, ZHANG Y B, ZHAO X H, et al. Experimental research on the remediation ability of four wetland plants on acid mine drainage[J]. Sustainability,2022,14(6):3655. doi: 10.3390/su14063655 [12] 彭映林, 仪丽清, 郑雅杰, 等. 粉煤灰处理酸性矿山废水的研究[J]. 环境科学与技术,2016,39(增刊1):280-284.PENG Y L, YI L Q, ZHENG Y J, et al. Treatment of acid mine drainage using fly ash[J]. Environmental Science & Technology,2016,39(Suppl 1):280-284. [13] MOON G D, OH S, CHOI Y C. Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar[J]. Construction and Building Materials,2016,124:1072-1080. doi: 10.1016/j.conbuildmat.2016.08.148 [14] 吴海霞, 吴小卉, 孟棒棒, 等. 黏土与粉煤灰吸附农村生活垃圾渗滤液的效能及机理[J]. 环境工程技术学报,2019,9(5):587-596.WU H X, WU X H, MENG B B, et al. Research on adsorption efficiency and mechanism of clay and coal fly ash for rural domestic waste leachate[J]. Journal of Environmental Engineering Technology,2019,9(5):587-596. [15] 贾含帅, 刘汉湖, 于常武, 等. 粉煤灰对重金属钼的吸附效果及其影响因素[J]. 环境工程技术学报,2012,2(1):18-22.JIA H S, LIU H H, YU C W, et al. Study on adsorptive effect and influencing factors of fly ash on heavy metal molybdenum[J]. Journal of Environmental Engineering Technology,2012,2(1):18-22. [16] SAHOO P K, TRIPATHY S, PANIGRAHI M K, et al. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage[J]. Applied Water Science,2013,3(3):567-576. doi: 10.1007/s13201-013-0113-2 [17] ZHAO S X, CHEN Z L, WANG B Y, et al. Cr(Ⅵ) removal using different reducing agents combined with fly ash leachate: a comparative study of their efficiency and potential mechanisms[J]. Chemosphere,2018,213:172-181. doi: 10.1016/j.chemosphere.2018.08.143 [18] LI H, DAI M W, DAI S L, et al. Methylene blue adsorption properties of mechanochemistry modified coal fly ash[J]. Human and Ecological Risk Assessment,2018,24(8):2133-2141. doi: 10.1080/10807039.2018.1440527 [19] LI J P, GAN J H, WANG G K, et al. Research on adsorbent using modified fly ash for campus domestic sewage treatment[J]. MATEC Web of Conferences,2016,67:07003. doi: 10.1051/matecconf/20166707003 [20] WANG N N, SUN X Y, ZHAO Q, et al. Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: system parameters, kinetics, and proposed mechanism[J]. Chemical Engineering Journal,2021,406:126734. doi: 10.1016/j.cej.2020.126734 [21] VISA M, BOGATU C, DUTA A C. Tungsten oxide: fly ash oxide composites in adsorption and photocatalysis[J]. Journal of Hazardous Materials,2015,289:244-256. doi: 10.1016/j.jhazmat.2015.01.053 [22] MUSHTAQ F, ZAHID M, BHATTI I A, et al. Possible applications of coal fly ash in wastewater treatment[J]. Journal of Environmental Management,2019,240:27-46. [23] 李文清, 邹萍. 粉煤灰吸附废水中重金属的研究现状与进展[J]. 工业水处理,2022,42(9):46-55.LI W Q, ZOU P. Research status and progress of fly ash adsorption of heavy metals in wastewater[J]. Industrial Water Treatment,2022,42(9):46-55. [24] RADZI N M, SOFIAN A H, JAMARI S S. Studies on the modification of fly ash structure with alkaline pre-treatment as a green composite flame retardant filler[J]. IOP Conference Series: Materials Science and Engineering,2021,1195(1):012015. doi: 10.1088/1757-899X/1195/1/012015 [25] 马卓. 改性粉煤灰吸附F−和Hg2+的研究[D]. 北京: 华北电力大学, 2009. [26] 赵子千, 沙浩群, 黄赳, 等. 煤矸石堆场地下水污染特征及成因研究[J]. 环境工程技术学报,2023,13(4):1604-1613.ZHAO Z Q, SHA H Q, HUANG J, et al. Study on the characteristics and causes of groundwater pollution in coal gangue dumps[J]. Journal of Environmental Engineering Technology,2023,13(4):1604-1613. [27] 辛在军, 王玺洋, 李亮, 等. 固定化SRB包埋颗粒组分优选及处理含 ${\mathrm{SO}}_4^{2-} $废水效果研究[J]. 工业水处理,2024,44(3):112-119.XIN Z J, WANG X Y, LI L, et al. Components optimization of immobilized SRB-embeded particles and study on the treatment effect of sulfate-containing wastewater[J]. Industrial Water Treatment,2024,44(3):112-119. [28] POZO G, PONGY S, KELLER J, et al. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage[J]. Water Research,2017,126:411-420. doi: 10.1016/j.watres.2017.09.058 [29] 胡璇, 匡玉云, 石磊. 铬酸钡分光光度法测定高硫铝土矿中硫酸根[J]. 冶金分析,2018,38(12):59-63.HU X, KUANG Y Y, SHI L. Determination of sulfate in high sulfur bauxite by Barium chromate spectrophotometry[J]. Metallurgical Analysis,2018,38(12):59-63. [30] 侯世辉, 王小明, 党正, 等. 不同粒度构造煤的孔结构特征研究[J]. 能源与环保,2023,45(12):142-146.HOU S H, WANG X M, DANG Z, et al. Research on pore structure characterization of tectonic coal with different particle sizes[J]. China Energy and Environmental Protection,2023,45(12):142-146. [31] 杨毅, 高敏轩, 陈元, 等. 电厂粉煤灰、炉渣和污泥复合陶粒对低浓度Pb2+的吸附特性[J]. 环境科学研究,2024,37(2):407-414.YANG Y, GAO M X, CHEN Y, et al. Adsorption characteristics of power plant fly ash, slag and sludge composite ceramics for low concentration Pb2+[J]. Research of Environmental Sciences,2024,37(2):407-414. [32] 严博文, 叶长文, 龚锐, 等. 响应曲面分析优化改性粉煤灰漂珠对水中氟的吸附性能及机理研究[J]. 环境科学研究,2019,32(4):709-717.YAN B W, YE C W, GONG R, et al. Optimization study of adsorption parameters for removal of fluoride by fly ash cenospheres modified with calcium using response surface methodology[J]. Research of Environmental Sciences,2019,32(4):709-717. [33] 李萌晓, 赵林, 陈达颖, 等. 硫酸盐还原菌处理酸性矿山废水的研究进展[J]. 应用化工,2023,52(12):3439-3443.LI M X, ZHAO L, CHEN D Y, et al. Research progress of acid mine wastewater treatment by sulfate-reducing bacteria[J]. Applied Chemical Industry,2023,52(12):3439-3443. [34] MONDAL P, MAJUMDER C B, MOHANTY B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments[J]. Journal of Hazardous Materials,2006,137(1):464-479. doi: 10.1016/j.jhazmat.2006.02.023 [35] 韩非, 张彦平, 李敏, 等. 热改性粉煤灰对水中Cr(Ⅵ)的吸附性能[J]. 工业水处理,2016,36(4):46-49.HAN F, ZHANG Y P, LI M, et al. Adsorption capacity of thermal modified fly ash for Cr(Ⅵ) from water[J]. Industrial Water Treatment,2016,36(4):46-49. [36] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57(4):603-619. doi: 10.1351/pac198557040603 [37] 陈俊涛, 丁淑芳, 白春华, 等. 焙烧对粉煤灰孔径分布及吸附性能的影响[J]. 黑龙江科技学院学报,2011,21(5):357-359.CHEN J T, DING S F, BAI C H, et al. Effect of roasting on pore distribution and adsorption performance of fly ash[J]. Journal of Heilongjiang Institute of Science and Technology,2011,21(5):357-359. [38] THAKRE D, RAYALU S, KAWADE R, et al. Magnesium incorporated bentonite clay for defluoridation of drinking water[J]. Journal of Hazardous Materials,2010,180(1/2/3):122-130. [39] 秦兰, 马欢, 刘晓晨. NaOH改性粉煤灰吸附溶液中Cu2+的研究[J]. 广州化工,2022,50(14):85-88.QIN L, MA H, LIU X C. Adsorption of Cu2+ in solution by NaOH modified fly ash[J]. Guangzhou Chemical Industry,2022,50(14):85-88. [40] 陈友治, 钟浩轩, 殷伟淞, 等. 钙硅比对水化硅酸钙结构、Zeta电势及减水剂吸附性能的影响分析[J]. 硅酸盐通报,2020,39(6):1798-1804.CHEN Y Z, ZHONG H X, YIN W S, et al. Effect of calcium-silicon ratio of calcium silicate hydrate on its structure, Zeta potential and adsorption capacity of superplasticizer[J]. Bulletin of the Chinese Ceramic Society,2020,39(6):1798-1804. [41] 朱天孝, 徐林冲, 朱勇, 等. CaCO3@SiO2的制备及其壳层SiO2生长动力学分析[J]. 中国粉体技术,2022,28(4):43-53.ZHU T X, XU L C, ZHU Y, et al. Preparation of CaCO3@SiO2 and analysis of growth kinetics of SiO2 shell[J]. China Powder Science and Technology,2022,28(4):43-53. [42] 吴子豪, 付振宇, 方瑞祥, 等. HTPB包覆AlH3的热分析动力学研究[J]. 化工新型材料,2022,50(增刊):307-311.WU Z H, FU Z Y, FANG Y X, et al. Thermal analysis kinetics of AIH3 coated with HTPB[J]. New Chemical Materials,2022,50(Suppl):307-311. [43] 温鹏. 改性粉煤灰处理酸性矿坑废水的研究[D]. 北京: 中国地质大学(北京), 2021. [44] LIU C, LIU X, CHEN X, et al. Preparation of spherical calcium carbonate by high-gravity reaction crystallization carbonization[J]. Chemical Industry and Engineering Progress,2021,40(11):6323-6331. ◇