留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

臭氧微纳米气泡技术处理油气田钻井废水的试验研究

王瑞琦 吉永忠 兰清泉

王瑞琦,吉永忠,兰清泉.臭氧微纳米气泡技术处理油气田钻井废水的试验研究[J].环境工程技术学报,2024,14(4):1151-1157 doi: 10.12153/j.issn.1674-991X.20240203
引用本文: 王瑞琦,吉永忠,兰清泉.臭氧微纳米气泡技术处理油气田钻井废水的试验研究[J].环境工程技术学报,2024,14(4):1151-1157 doi: 10.12153/j.issn.1674-991X.20240203
WANG R Q,JI Y Z,LAN Q Q.Experimental study on treatment of drilling engineering wastewater by ozone micro-nano bubble technology for oil and gas fields[J].Journal of Environmental Engineering Technology,2024,14(4):1151-1157 doi: 10.12153/j.issn.1674-991X.20240203
Citation: WANG R Q,JI Y Z,LAN Q Q.Experimental study on treatment of drilling engineering wastewater by ozone micro-nano bubble technology for oil and gas fields[J].Journal of Environmental Engineering Technology,2024,14(4):1151-1157 doi: 10.12153/j.issn.1674-991X.20240203

臭氧微纳米气泡技术处理油气田钻井废水的试验研究

doi: 10.12153/j.issn.1674-991X.20240203
详细信息
    作者简介:

    王瑞琦(1995—),女,助理工程师,主要研究方向为微纳米气泡应用技术,2672668443@qq.com

    通讯作者:

    吉永忠(1968—),男,高级工程师,主要研究方向为石油工程领域的钻井液、完井液和防漏堵漏技术,jiyz_sc@cnpc.com.cn

  • 中图分类号: X703

Experimental study on treatment of drilling engineering wastewater by ozone micro-nano bubble technology for oil and gas fields

  • 摘要:

    随着清洁化生产的深入推进和环保意识的提高,对作业现场的钻井废水及其处理方式的要求越来越严格。针对钻井废水稳定性高、化学需氧量(COD)高、色度高、降解难的特点,采用微纳米气泡技术以提高气体利用率和传质效果,结合臭氧对难降解的高浓度有机污染物进行降解。室内模拟试验表明,经过预处理后再采用臭氧微纳米气泡技术处理,COD从47 328 mg/L降至131 mg/L,去除率达到99.7%,TOC从15 146 mg/L降至65.2 mg/L,去除率达到99.6%,COD和TOC的去除率均超过99.5%,臭氧微纳米气泡技术对高色度和高COD具有显著的去除效果。采用絮凝沉淀、芬顿工艺配合臭氧微纳米气泡技术能够降低臭氧投加量,从而降低投资和运行成本,是一种经济高效的处理方法。

     

  • 图  1  激光粒度仪检测清水中空气纳米气泡粒径及浓度分布

    Figure  1.  Size and concentration distribution of air nanobubbles in clean water detected by laser particle size analyzer

    图  2  试验设备

    Figure  2.  Experimental equipment

    图  3  配方2#原液随臭氧投加量变化

    Figure  3.  Formula 2# solution changes with ozone dosage

    图  4  配方2# ORP和pH、COD和TOC随臭氧投加量的变化

    Figure  4.  ORP and pH , COD and TOC concentration of formula 2# solution changes with different ozone dosage

    图  5  配方3#稀释液随臭氧投加量变化

    Figure  5.  Formula 3# dilution solution changes with ozone dosage

    图  6  配方3#稀释液ORP、pH、COD和TOC随臭氧投加量的变化

    Figure  6.  ORP, pH , COD and TOC concentration of formula 3# dilution solution changes with different ozone dosage

    图  7  配方4#稀释液ORP、pH、COD和TOC随臭氧投加量的变化

    Figure  7.  ORP, pH , COD and TOC concentration of formula 4# dilution solution changes with different ozone dosage

    表  1  药剂配方

    Table  1.   Reagent formulations g/L

    配方
    序号
    LIGTROL®

    ENCAPIN®FA

    SULASPHA®
    ENCAPIN®KP
    SMPTROL®
    氢氧化钠
    氯化钠
    1# 0 2 0 2 0 0 0
    2# 20 1.5 0 1.5 20 2 0
    3# 20 1.5 10 1.5 20 2
    4# 20 1.5 10 1.5 20 2 100
    下载: 导出CSV

    表  2  试验水质参数

    Table  2.   Parameters of experimental water quality

    配方序号COD/(mg/L)pHTDS/(mg/L)色度
    1#2 6958.625 1700
    2#40 30412.2613 50020 000
    3#47 32811.3916 45040 000
    4#31 30812.29106 500100 000
    下载: 导出CSV

    表  3  处理过程中配方3#溶液参数变化

    Table  3.   Parameters of formula 3# solution during processing

    工艺流程 TOC COD
    浓度/(mg/L) 去除率/% 数值/(mg/L) 去除率/%
    原液 15 146 47 328
    絮凝沉淀 2 805 81.5 7 854 83.4
    芬顿 668.5 95.6 1 671 96.5
    臭氧微纳米气泡 65.2 99.6 131 99.7
    下载: 导出CSV
  • [1] LU R H, HUANG G H, ZHANG H Y, et al. Treatment of drilling wastewater by combined coagulation-ultraviolet/Fenton-pressurized biological processes[J]. Journal of Environmental Engineering,2010,136(3):281-287. doi: 10.1061/(ASCE)EE.1943-7870.0000149
    [2] 杨德敏, 袁建梅. O3/TiO2/Al2O3处理钻井废水的试验研究[J]. 工业水处理,2014,34(6):69-72.

    YANG D M, YUAN J M. Experimental study on the treatment of drilling wastewater by O3/TiO2/Al2O3 process[J]. Industrial Water Treatment,2014,34(6):69-72.
    [3] 江丽, 刘春艳, 王红娟, 等. 国内外页岩气开发环境管理现状及对比[J]. 天然气工业,2021,41(12):146-155.

    JIANG L, LIU C Y, WANG H J, et al. Domestic and foreign environmental management of shale gas development: status and comparison[J]. Natural Gas Industry,2021,41(12):146-155.
    [4] ICF Consulting for The American Petroleum Institute. Overview of exploration and production waste volumes and waste management practices in the United States[R/OL]. [2024-03-20]. http://www.api.org/aboutoilgas/sectors/explore/wastemanagement.cfm.
    [5] WADA K, SAITO M, YAMAGUCHI H. Development of the waste mud treatment system for drilling vessel "CHIKYU"[C]//OCEANS 2006: Asia Pacific. Singapore: IEEE, 2006.
    [6] ZHAO C L, ZHOU J Y, YAN Y, et al. Application of coagulation/flocculation in oily wastewater treatment: a review[J]. Science of the Total Environment,2021,765:142795. doi: 10.1016/j.scitotenv.2020.142795
    [7] VINGE S L, ROSENBLUM J S, LINDEN Y S, et al. Assessment of UV disinfection and advanced oxidation processes for treatment and reuse of hydraulic fracturing produced water[J]. ACS ES& T Engineering,2021,1(3):490-500.
    [8] CHIKWE T N, IGWE E C. Characterization, efffects and chemical treatment of heavy metals in produced water from injection wells using hydroxide precipitation[J]. Nigerian Journal of Chemical Research,2024,28(2):74-87. doi: 10.4314/njcr.v28i2.1
    [9] KAVEESHWAR A R, KUMAR P S, REVELLAME E D, et al. Adsorption properties and mechanism of barium(Ⅱ) and strontium (Ⅱ) removal from fracking wastewater using pecan shell based activated carbon[J]. Journal of Cleaner Production,2018,193:1-13. doi: 10.1016/j.jclepro.2018.05.041
    [10] KUYUKINA M S, KRIVORUCHKO A V, IVSHINA I B. Advanced bioreactor treatments of hydrocarbon-containing wastewater[J]. Applied Sciences,2020,10(3):831. doi: 10.3390/app10030831
    [11] HICKENBOTTOM K L, HANCOCK N T, HUTCHINGS N R, et al. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations[J]. Desalination,2013,312:60-66. doi: 10.1016/j.desal.2012.05.037
    [12] 黄青, 刘爱荣, 张立娟. 微纳米气泡特性及在土壤环境改善中的应用[J]. 环境工程技术学报,2022,12(4):1324-1332.

    HUANG Q, LIU A R, ZHANG L J. Characteristics of micro-nanobubbles and their applications in soil environment improvement[J]. Journal of Environmental Engineering Technology,2022,12(4):1324-1332.
    [13] 钱杉杉, 王兵, 张太亮, 等. O3/H2O2氧化技术处理钻井废水的研究[J]. 石油与天然气化工,2007,36(5):427-428.

    QIAN S S, WANG B, ZHANG T L, et al. The study on ozone/hydrogen peroxide oxidation technology in drilling wastewater disposal[J]. Chemical Engineering of Oil & Gas,2007,36(5):427-428.
    [14] 孙乐, 张锋华, 杨卫民. 微纳米气泡形成羟基自由基的研究进展[J]. 净水技术,2021,40(2):37-41.

    SUN L, ZHANG F H, YANG W M. Research progress of hydroxyl radicals formed by micro-nanobubble[J]. Water Purification Technology,2021,40(2):37-41.
    [15] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Journal of Physical Chemistry B,2007,111(6):1343-1347. doi: 10.1021/jp0669254
    [16] 王炼, 陈利芳, 何习宝, 等. 紫外/双氧水氧化处理煤化工生化尾水中试研究[J]. 给水排水,2024,60(2):72-78.

    WANG L, CHEN L F, HE X B, et al. Pilot study of UV/hydrogen peroxide oxidation treatment of coal chemical biochemical tail[J]. Water & Wastewater Engineering,2024,60(2):72-78.
    [17] 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展,2023,42(增刊1):430-438.
    [18] 邓禺南, 陈炜鸣, 崔瑜旗, 等. 铁碳促进O3/H2O2体系深度处理准好氧矿化垃圾床渗滤液尾水中难降解有机物[J]. 环境科学学报,2018,38(11):4371-4382.

    DENG Y N, CHEN W M, CUI Y Q, et al. Degradation of recalcitrant organics in SAARB treatment effluent of landfill leachate by iron-carbon-O3/H2O2 process[J]. Acta Scientiae Circumstantiae,2018,38(11):4371-4382.
    [19] WANG H, LIU Q, WANG Z, et al. Synthesis and flocculation performance of a new cationic polyacrylamide flocculant with high nitrogen content[J]. Journal of Applied Polymer Science. 2008, 107(1): 282-287.
    [20] NESRINNE S, DJAMEL A. Synthesis, characterization and rheological behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels[J]. Arabian Journal of Chemistry,2017,10(4):539-547. doi: 10.1016/j.arabjc.2013.11.027
    [21] ARAMYAN S M. Advances in Fenton and Fenton based oxidation processes for industrial effluent contaminants control-a review[J]. International Journal of Environmental Sciences & Natural Resources,2017,2(4):1-18.
    [22] 阮霞, 刘鲁建, 董俊, 等. 铁基复合类芬顿催化剂及其在废水深度处理上的应用[J]. 环境工程,2023,41(增刊2):150-153.
    [23] 方存霞. 锰基催化剂的制备与催化臭氧氧化降解水中有机物的性能研究[D]. 苏州: 苏州大学, 2019.
    [24] 谭文捷, 李文轩, 唐海燕, 等. 催化氧化高含硫废水锰基催化剂的制备及活性研究[J]. 现代化工,2023,43(4):101-105.

    TAN W J, LI W X, TANG H Y, et al. Preparation of manganese-based catalyst for catalytic oxidation of high sulfur-containing wastewater and study on its activity[J]. Modern Chemical Industry,2023,43(4):101-105. ⊕
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  65
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-31

目录

    /

    返回文章
    返回