Effects of lignite dust on organic carbon mineralization and bacterial community in reclaimed soil in mining area
-
摘要:
煤粉尘沉降至地表后能够显著提高土壤有机碳含量,改变土壤理化性质和土壤微生物群落结构。通过添加褐煤粉尘的土壤培养试验,探究煤粉尘输入的有机碳对土壤有机碳矿化效果及细菌群落的影响。结果表明:在褐煤粉尘影响下,土壤CO2矿化量和矿化速率较对照组最大提升55.02%和54.58%(第5天);土壤易氧化有机碳和土壤微生物生物量碳含量在培养结束后较最大值分别降低40.75和141.39 mg/kg。添加褐煤粉尘导致变形菌门的相对丰度显著降低,而酸杆菌、放线杆菌和厚壁菌门的相对丰度升高。褐煤粉尘输入的有机组分能够在短期内产生激发效应,其自身被土壤细菌分解的过程也能促进土壤CO2的矿化累积,并且提高土壤细菌群落的多样性和变异程度。褐煤粉尘中的有机碳极大程度参与了土壤有机碳库周转过程。
Abstract:After coal dust sinks to the surface, it can significantly increase the content of soil organic carbon and change the soil physicochemical properties and soil microbial community structure. This article explored the mechanism of the effect of organic carbon input from coal dust on soil organic carbon mineralization and bacterial community structure through soil cultivation experiments with the addition of lignite dust. The results showed that under the influence of lignite dust, the amount and rate of CO2 mineralization in soil increased by 55.02% and 54.58% compared to the control group on day 5; the contents of readily oxidation carbon (ROC) and microbial biomass carbon (MBC) in soil decreased by 40.75 and 141.39 mg/kg, respectively, compared to the maximum values after the end of cultivation. The addition of lignite led to a significant decrease in the relative abundance of Proteobacteria, while the relative abundance of Acidobacteria, Actinobacteria, and Firmicutes increased. The organic components input from lignite dust can produce stimulating effects in the short term. Its decomposition process by soil bacteria can also promote the accumulation of soil CO2 mineralization, increasing the diversity and variation of soil bacterial communities. The organic carbon in lignite dust greatly participates in the turnover process of soil organic carbon pool.
-
表 1 供试土壤基本理化性质
Table 1. Basic physical and chemical properties of tested soil
SOC含量/
(g/kg)AN含量/
(mg/kg)AP含量/
(mg/kg)AK含量/
(mg/kg)pH EC 3.49 18.03 4.94 91.77 8.35 116.4 注:SOC为土壤有机碳,AN为碱解氮,AP为有效磷,AK为速效钾。 表 2 褐煤的工业分析与元素分析
Table 2. Industrial analysis and elemental analysis of lignite
% 水分 灰分 挥发分 固定碳 C H O N S 13.99 19.72 43.13 23.16 70.47 4.85 23.22 1.15 0.3 表 3 4个处理细菌群落α多样性指数
Table 3. Alpha diversity index of soil bacterial communities in four treatments
处理 Shannon指数 Chao1指数 Ace指数 Simpson指数 CK 5.94±0.06c 4 160±91.3bc 4 352±113.4b 0.015±0.0a HMA 6.30±0.01b 4 424±243.5b 4 480±181.7b 0.012±0.0ab HMB 6.44±0.09ab 5 004±148.6a 5 010±209.3a 0.016±0.0a HMC 6.52±0.03a 3 718±268.2c 3 661±197.7c 0.008±0.0b -
[1] 郎会荣, 杜平, 肖伟丽. 煤的综合利用[M]. 成都: 电子科技大学出版社, 2014. [2] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报,2002,31(5):362-366. doi: 10.3321/j.issn:1000-1964.2002.05.006FENG J, LI W Y, XIE K C. Research on coal structure using FT-IR[J]. Journal of China University of Mining & Technology,2002,31(5):362-366. doi: 10.3321/j.issn:1000-1964.2002.05.006 [3] 张双全. 煤化学[M]. 4版. 徐州: 中国矿业大学出版社, 2015. [4] 刘平, 张强, 杜文波, 等. 煤粉尘添加量与温度对山西省两种土壤碳释放规律的影响[J]. 中国生态农业学报,2011,19(3):516-519. doi: 10.3724/SP.J.1011.2011.00516LIU P, ZHANG Q, DU W B, et al. Effects of coal dust and temperature on CO2 emission in two soil types in Shanxi Province[J]. Chinese Journal of Eco-Agriculture,2011,19(3):516-519. doi: 10.3724/SP.J.1011.2011.00516 [5] NIE X J, ZHAO T Q, SU Y Y. Fossil fuel carbon contamination impacts soil organic carbon estimation in cropland[J]. Catena,2021,196:104889. doi: 10.1016/j.catena.2020.104889 [6] DAS R, MAITI S K. Importance of carbon fractionation for the estimation of carbon sequestration in reclaimed coalmine soils: a case study from Jharia coalfields, Jharkhand, India[J]. Ecological Engineering,2016,90:135-140. doi: 10.1016/j.ecoleng.2016.01.025 [7] USSIRI D A N, JACINTHE P A, LAL R. Methods for determination of coal carbon in reclaimed minesoils: a review[J]. Geoderma,2014,214/215:155-167. doi: 10.1016/j.geoderma.2013.09.015 [8] 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报,2014,34(17):4829-4838.YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica,2014,34(17):4829-4838. [9] 徐嘉晖, 高雷, 崔晓阳. 大兴安岭中段森林土壤的黑碳含量及其在不同粒级中的分布[J]. 应用生态学报,2017,28(10):3111-3118.XU J H, GAO L, CUI X Y. Black carbon content and distribution in different particle size fractions of forest soils in the middle part of Great Xing'an Mountains, China[J]. Chinese Journal of Applied Ecology,2017,28(10):3111-3118. [10] FETTWEIS U, BENS O, HÜTTL R F. Accumulation and properties of soil organic carbon at reclaimed sites in the Lusatian lignite mining district afforested with Pinus sp.[J]. Geoderma,2005,129(1/2):81-91. [11] 聂小军, 刘祥, 孙迎涛, 等. 矿粮复合区煤累积对土壤团粒结构的影响[J]. 水土保持学报,2019,33(2):169-175.NIE X J, LIU X, SUN Y T, et al. Effect of coal accumulation on soil aggregate structure in the mine-crop overlapped zone[J]. Journal of Soil and Water Conservation,2019,33(2):169-175. [12] 闵凡飞, 赵晴, 李宏亮, 等. 煤泥水中高岭土颗粒表面荷电特性研究[J]. 中国矿业大学学报,2013,42(2):284-290.MIN F F, ZHAO Q, LI H L, et al. Study of electrokinetic properties of kaolinite in coal slime[J]. Journal of China University of Mining & Technology,2013,42(2):284-290. [13] KWIATKOWSKA-MALINA J. The influence of exogenic organic matter on selected chemical and physicochemical properties of soil[J]. Polish Journal of Soil Science, 2015, 48(2):173-180. [14] KOŁODZIEJ B, BRYK M, OTREMBA K. Effect of rockwool and lignite dust on physical state of rehabilitated post-mining soil[J]. Soil and Tillage Research,2020,199:104603. doi: 10.1016/j.still.2020.104603 [15] SPENCER S, TINNIN R. Effects of coal dust on plant growth and species composition in an arid environment[J]. Journal of Arid Environments,1997,37(3):475-485. doi: 10.1006/jare.1997.0289 [16] 刘平, 张强, 程滨, 等. 电厂煤粉尘沉降特征及其对周边土壤主要性质的影响[J]. 中国土壤与肥料,2010(5):21-24. doi: 10.3969/j.issn.1673-6257.2010.05.005LIU P, ZHANG Q, CHENG B, et al. The deposition law of coal dust from power generation plant and its effects on prosperities of the surrounding soil[J]. Soil and Fertilizer Sciences in China,2010(5):21-24. doi: 10.3969/j.issn.1673-6257.2010.05.005 [17] COHEN M S, GABRIELE P D. Degradation of coal by the fungi Polyporus versicolor and Poria monticola [J]. Applied and Environmental Microbiology,1982,44(1):23-27. doi: 10.1128/aem.44.1.23-27.1982 [18] MUKASA-MUGERWA T T, DAMES J F, ROSE P D. The role of a plant/fungal consortium in the degradation of bituminous hard coal[J]. Biodegradation,2011,22(1):129-141. doi: 10.1007/s10532-010-9382-8 [19] 王道涵, 山峰, 汤家喜, 等. 生物炭修复有机污染土壤的研究进展[J]. 环境工程技术学报,2019,9(4):460-466. doi: 10.12153/j.issn.1674-991X.2018.03.090WANG D H, SHAN F, TANG J X, et al. Research progresses on remediation of organic contaminated soil by biochar[J]. Journal of Environmental Engineering Technology,2019,9(4):460-466. doi: 10.12153/j.issn.1674-991X.2018.03.090 [20] SUN B W, ZHU R B, SHI Y, et al. Effects of coal-fired power plants on soil microbial diversity and community structures[J]. Journal of Environmental Sciences (China),2024,137:206-223. doi: 10.1016/j.jes.2023.02.014 [21] 陈栋. 不同煤级煤中多环芳烃(PAHs)的分布特征[D]. 太原: 太原理工大学, 2020. [22] 高宏樟, 张强. 太原市煤粉尘降落量监测及其对土壤肥力的影响[J]. 山西农业科学,2008,36(3):55-60. doi: 10.3969/j.issn.1002-2481.2008.03.016GAO H Z, ZHANG Q. Quantitative monitoring of coal dust in Taiyuan city and its effect to soil nutrition[J]. Journal of Shanxi Agricultural Sciences,2008,36(3):55-60. doi: 10.3969/j.issn.1002-2481.2008.03.016 [23] 刘平, 张强, 杜文波, 等. 焦化厂煤粉尘的沉降规律及其对玉米抗氧化系统的影响[J]. 中国农学通报,2011,27(7):249-252.LIU P, ZHANG Q, DU W B, et al. The deposition law of coal dust from coke oven plant and its effects on antioxidant system of the maize[J]. Chinese Agricultural Science Bulletin,2011,27(7):249-252. [24] 郝长胜, 袁迎春, 贾廷贵, 等. 不同变质程度煤的化学结构红外光谱研究[J]. 煤矿安全,2022,53(11):15-22.HAO C S, YUAN Y C, JIA T G, et al. Infrared spectral research on chemical structure of coal with different levels of metamorphism[J]. Safety in Coal Mines,2022,53(11):15-22. [25] 王宗贤, 刘雁来, 阮竹, 等. 用红外光谱表征干酪根和煤的芳碳量[J]. 石油大学学报(自然科学版),1992,16(4):66-71.WANG Z X, LIU Y L, RUAN Z, et al. Characterization of aromatic carbon in kerogen and coal with infrared spectroscopy[J]. Journal of the University of Petroleum, China,1992,16(4):66-71. [26] 贾廷贵, 李璕, 曲国娜, 等. 不同变质程度煤样化学结构特征FTIR表征[J]. 光谱学与光谱分析,2021,41(11):3363-3369.JIA T G, LI X, QU G N, et al. FTIR characterization of chemical structures characteristics of coal samples with different metamorphic degrees[J]. Spectroscopy and Spectral Analysis,2021,41(11):3363-3369. [27] DUAN B W, YU A, ZHANG H L. Effect of exogenous nutrient addition on soil organic carbon mineralization and stabilization[J]. Agronomy,2023,13(7):1908. doi: 10.3390/agronomy13071908 [28] LI F F, ZHOU J H, GUO X R, et al. Effect of biochar and earthworms on mineralization of organic matter in top soil and deep soil[J]. Environmental Engineering Science,2023,40(8):340-346. doi: 10.1089/ees.2023.0069 [29] KHATOON H, SOLANKI P, NARAYAN M, et al. Role of microbes in organic carbon decomposition and maintenance of soil ecosystem[J]. International Journal of Chemical Studies,2017,5:1648-1656. [30] FAKOUSSA R M. Production of water-soluble coal-substances by partial microbial liquefaction of untreated hard coal[J]. Resources, Conservation and Recycling,1988,1(3/4):251-260. [31] FAKOUSSA R M, HOFRICHTER M. Biotechnology and microbiology of coal degradation[J]. Applied Microbiology and Biotechnology,1999,52(1):25-40. doi: 10.1007/s002530051483 [32] HUANG Z X, URYNOWICZ M A, COLBERG P J S. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate[J]. Fuel,2013,111:813-819. doi: 10.1016/j.fuel.2013.03.079 [33] WANG W C, LIU G, SHEN J, et al. Reducing polycyclic aromatic hydrocarbons content in coal tar pitch by potassium permanganate oxidation and solvent extraction[J]. Journal of Environmental Chemical Engineering,2015,3(3):1513-1521. doi: 10.1016/j.jece.2015.05.024 [34] 花洁, 王健媛, 陈运帷, 等. 煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述[J]. 环境工程技术学报,2024,14(1):139-147. doi: 10.12153/j.issn.1674-991X.20230524HUA J, WANG J Y, CHEN Y W, et al. A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils[J]. Journal of Environmental Engineering Technology,2024,14(1):139-147. doi: 10.12153/j.issn.1674-991X.20230524 [35] HAYATSU R, ANDERS E. Organic compounds in meteorites and their origins[M]//Topics in Current Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981: 1-37. [36] WANG Q J, CAO X, JIANG H, et al. Straw application and soil microbial biomass carbon change: a meta-analysis[J]. Clean: Soil, Air, Water,2021,49(2):2000386. doi: 10.1002/clen.202000386 [37] LI J, WEN Y C, LI X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research,2018,175:281-290. doi: 10.1016/j.still.2017.08.008 [38] GOGOI B, KALITA B, BHUPENCHANDRA I, et al. Soil carbon, microbial biomass carbon, soil health and productivity of toria (Brassica campestris L. ) crop as affected by the application of organic manures[J]. Journal of Environmental Biology,2021,42(5):1379-1386. doi: 10.22438/jeb/42/5/MRN-1648 [39] AKIMBEKOV N, DIGEL I, ABDIEVA G, et al. Lignite biosolubilization and bioconversion by Bacillus sp. : the collation of analytical data[J]. Biofuels,2021,12(3):247-258. doi: 10.1080/17597269.2020.1753936 [40] JIANG F, LI Z H, LV Z W, et al. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products[J]. Fuel,2013,103:639-645. doi: 10.1016/j.fuel.2012.08.030 [41] YANG Y J, LIU H X, DAI Y C, et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments[J]. Science of the Total Environment,2021,750:141719. doi: 10.1016/j.scitotenv.2020.141719 [42] SPAIN A M, KRUMHOLZ L R, ELSHAHED M S. Abundance, composition, diversity and novelty of soil Proteobacteria[J]. The ISME Journal,2009,3(8):992-1000. doi: 10.1038/ismej.2009.43 [43] BULANKINA M A, LYSAK L V, ZVYAGINTSEV D G. Lignite microorganisms[J]. Biology Bulletin,2007,34(2):194-197. □ doi: 10.1134/S1062359007020124