Effects of nitrogen application and irrigation treatment on soil organic carbon components and enzyme activities in wheat field
-
摘要:
探讨不同水氮管理对麦田土壤有机碳(SOC)含量、SOC组分及土壤酶活性的影响,对促进SOC库提升和助力“双碳”目标实现具有重要作用。试验设置雨养和灌溉2个灌水处理及3个施氮水平(分别为0、180和360 kg/hm2,记为N0、N180和N360),共6个处理。于小麦收获期,测定0~40 cm土层SOC、易氧有机碳(EOC)、颗粒有机碳(POC)和矿质结合有机碳(MOC)含量,以及土壤脲酶(UA)、β-葡萄糖苷酶(β -BG)、蔗糖酶(IA)、过氧化氢酶(HPA)活性。结果表明:与雨养条件下相比,灌溉条件下会降低SOC含量,不利于维持SOC的稳定;N180处理下,与灌溉条件下相比,雨养条件SOC含量在0~20和20~40 cm土层中分别提高了6.3%和71.7%;并且在3个氮水平下,雨养条件下的EOC含量均高于灌溉条件。研究显示,施氮180 kg/hm2结合适宜的水分管理有利于促进SOC积累。适宜农田水氮管理不仅是实现作物单产提升的重要途径,在促进SOC库提升和助力实现“双碳”目标方面也发挥着重要作用。
Abstract:Exploring the effects of different water and nitrogen management practices on soil organic carbon (SOC), SOC components, and soil enzyme activities in wheat fields plays an important role in promoting SOC sequestration and contributing to the achievement of dual carbon goals. The experiment included two irrigation treatments, rainfed and irrigated, and three nitrogen application levels of 0, 180, and 360 kg/hm2 (marked as N0, N180 and N360), totaling six treatments. During the wheat harvesting period, soil samples from 0-40 cm depth were collected to measure the contents of SOC, easily oxidizable organic carbon (EOC), particulate organiccarbon (POC), and mineral-associated organic carbon (MOC), as well as the activities of soil urease (UA), β-glucosidase (β-BG), invertase (IA), and catalase (HPA). The results showed that compared to rain-fed conditions, irrigation conditions reduced SOC content, which was unfavorable for maintaining SOC stability. Under N180 treatment, compared to irrigation conditions, SOC content under rain-fed conditions increased by 6.3% and 71.7% in the 0-20 and 20-40 cm layers, respectively. Furthermore, at three nitrogen levels, EOC content under rain-fed conditions was higher than that under irrigation conditions.The study showed that applying 180 kg/hm² of nitrogen combined with appropriate water management was beneficial for promoting SOC accumulation. Proper water and nitrogen management in farmland was not only crucial for increasing crop yields but also played an important role in enhancing SOC storage and helping achieve the "dual carbon" goals.
-
Key words:
- water and nitrogen /
- soil organic carbon (SOC) /
- SOC components /
- soil enzyme activity /
- wheat field
-
表 1 土壤0~20 cm土层基本理化性质
Table 1. Basic physicochemical properties of 0-20 cm soil
土壤质地 土壤容重/
(g/cm3)有机质/
(g/kg)全氮/
(g/kg)速效磷/
(mg/kg)速效钾/
(mg/kg)壤土 1.38 11.60 0.89 18.50 106 表 2 不同水氮处理土壤有机碳组分占总有机碳的比例
Table 2. Ratio of soil organic carbon components to total organic carbon under varying water and nitrogen treatments
% 土层/cm 水分管理 施氮处理 MOC/SOC POC/SOC EOC/SOC 0~20 I N0 78.93±3.77a 12.25±1.69b 3.81±0.57b N180 76.13±4.31a 17.24±2.03a 3.70±0.45b N360 79.55±4.32a 12.77±0.57b 8.39±0.62a R N0 74.90±1.37b 12.89±0.36b 18.76±0.03a N180 67.48±4.06c 15.81±0.46a 10.84±1.25b N360 88.07±0.16a 13.16±0.53b 20.21±2.55a 20~40 I N0 85.28±15.04a 5.72±0.22b 39.10±2.20a N180 76.15±18.24a 11.62±1.39a 39.41±7.39a N360 92.10±7.24a 2.48±1.02c 26.73±1.18a R N0 90.95±3.97b 5.59±0.12b 37.23±4.30ab N180 79.71±1.32c 6.54±0.41a 28.46±0.23b N360 96.22±2.81a 4.88±0.23b 41.70±4.56a 注: 不同小写字母表示同一灌水处理下不同施氮处理间差异显著(P<0.05)。全文同。 表 3 不同水氮处理土壤酶活性
Table 3. Soil enzyme activities in different water and nitrogen treatments
土层/cm 水分管理 施氮处理 UA/〔mg/(g·d)〕 IA/〔mg/(g·d)〕 HPA〔mg/(g·h)〕 β-BG /〔mg/(g·d)〕 0~20 R N0 2.652±0.030b 14.211±0.602a 1.943±0.306a 0.562±0.012b N180 2.814±0.037a 9.007±0.164b 1.935±0.127a 0.695±0.016a N360 2.696±0.033b 2.883±0.120c 1.980±0.072a 0.542±0.016b I N0 1.305±0.008b 20.762±0.198a 1.665±0.241a 1.726±0.016a N180 1.533±0.005a 12.597±0.252b 1.680±0.172a 1.277±0.024c N360 1.062±0.007c 9.613±0.198c 1.380±0.019a 1.379±0.024b 20~40 R N0 1.470±0.023b 1.411±0.079b 2.053±0.160a 0.861±0.012c N180 1.766±0.033a 4.558±0.228a 1.970±0.033a 1.753±0.018b N360 1.438±0.026b 1.517±0.091b 1.522±0.096b 2.121±0.000a I N0 0.395±0.006c 1.029±0.079a 2.342±0.085a 1.688±0.016b N180 0.919±0.009a 1.160±0.163a 1.828±0.242b 1.607±0.026c N360 0.533±0.007b 1.238±0.163a 1.662±0.015b 1.740±0.012a 表 4 不同水氮处理土壤理化性质
Table 4. Soil physical and chemical properties under varying water and nitrogen treatments
土层/cm 水分管理 施氮量 NO3 −/(mg/kg) NH4 +/(mg/kg) 0~20 I N0 0.468±0.018b 12.123±0.202a N180 0.546±0.008a 9.565±0.069b N360 0.343±0.009c 9.547±0.183b R N0 0.443±0.003c 8.688±0.039b N180 0.635±0.005b 11.890±0.148a N360 1.191±0.018a 7.565±0.094c 20~40 I N0 0.362±0.005a 9.683±0.247c N180 0.347±0.007a 12.190±0.206a N360 0.250±0.046b 10.523±0.072b R N0 0.310±0.008b 8.859±0.021b N180 0.347±0.067b 9.878±0.136a N360 1.238±0.033a 6.144±0.290c -
[1] HU Q Y, LIU T Q, DING H N, et al. The effects of straw returning and nitrogen fertilizer application on soil labile organic carbon fractions and carbon pool management index in a rice-wheat rotation system[J]. Pedobiologia,2023,101:150913. doi: 10.1016/j.pedobi.2023.150913 [2] 郭文芳, 陈艳梅, 高飞, 等. 太行山7种药用植物性状特征及其对土壤因子的响应[J]. 环境工程技术学报,2024,14(2):612-621. doi: 10.12153/j.issn.1674-991X.20230694GUO W F, CHEN Y M, GAO F, et al. Traits of seven medicinal plants in Taihang Mountains and their responses to soil factors[J]. Journal of Environmental Engineering Technology,2024,14(2):612-621. doi: 10.12153/j.issn.1674-991X.20230694 [3] JING Y L, ZHANG Y H, HAN I, et al. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil[J]. Scientific Reports,2020,10:8837. doi: 10.1038/s41598-020-65796-2 [4] SUN Z C, QIN W L, WANG X, et al. Effects of manure on topsoil and subsoil organic carbon depend on irrigation regimes in a 9-year wheat-maize rotation[J]. Soil and Tillage Research,2021,205:104790. doi: 10.1016/j.still.2020.104790 [5] WU H Q, DU S Y, ZHANG Y L, et al. Effects of irrigation and nitrogen fertilization on greenhouse soil organic nitrogen fractions and soil-soluble nitrogen pools[J]. Agricultural Water Management,2019,216:415-424. doi: 10.1016/j.agwat.2019.02.020 [6] 李明, 徐涛, 俞湾青, 等. 不同灌溉模式和施肥处理对受涝稻田土壤酶活性的影响[J]. 节水灌溉,2022(9):24-29.LI M, XU T, YU W Q, et al. Effects of different irrigation modes and fertilization treatments on soil enzyme activities in waterlogging paddy fields[J]. Water Saving Irrigation,2022(9):24-29. [7] YANG Z C, ZHAO N, HUANG F, et al. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain[J]. Soil and Tillage Research,2015,146:47-52. doi: 10.1016/j.still.2014.06.011 [8] 陈思静, 杜爱林, 李伏升. 不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响[J]. 华南农业大学学报,2022,43(3):34-41. doi: 10.7671/j.issn.1001-411X.202107044CHEN S J, DU A L, LI F S. Effects of different drip fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil[J]. Journal of South China Agricultural University,2022,43(3):34-41. doi: 10.7671/j.issn.1001-411X.202107044 [9] AWALE R, CHATTERJEE A, FRANZEN D. Tillage and N-fertilizer influences on selected organic carbon fractions in a North Dakota silty clay soil[J]. Soil and Tillage Research,2013,134:213-222. doi: 10.1016/j.still.2013.08.006 [10] 郝海波, 许文霞, 侯振安. 水氮耦合对滴灌棉田土壤有机碳组分及酶活性的影响[J]. 植物营养与肥料学报,2023,29(5):860-875. doi: 10.11674/zwyf.2022440HAO H B, XU W X, HOU Z A. Effects of coupled water and nitrogen on soil organic carbon fractions and enzymes in a drip-irrigated cotton field[J]. Journal of Plant Nutrition and Fertilizers,2023,29(5):860-875. doi: 10.11674/zwyf.2022440 [11] TANG B, ROCCI K S, LEHMANN A, et al. Nitrogen increases soil organic carbon accrual and alters its functionality[J]. Global Change Biology,2023,29(7):1971-1983. doi: 10.1111/gcb.16588 [12] 许思思, 吕雪梅, 周萌, 等. 秸秆深埋配施氮肥对黑土有机碳组分及养分的影响[J]. 河南农业科学,2022,51(12):63-72.XU S S, LÜ X M, ZHOU M, et al. Effects of straw deep burial combined with nitrogen fertilizer on organic carbon components and nutrients in black soils[J]. Journal of Henan Agricultural Sciences,2022,51(12):63-72. [13] 马伟伟, 王丽霞, 李娜, 等. 不同水氮水平对川西亚高山林地土壤酶活性的影响[J]. 生态学报,2019,39(19):7218-7228.MA W W, WANG L X, LI N, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content[J]. Acta Ecologica Sinica,2019,39(19):7218-7228. [14] 李增强, 张贤, 王建红, 等. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响[J]. 植物营养与肥料学报,2019,25(4):525-534. doi: 10.11674/zwyf.18121LI Z Q, ZHANG X, WANG J H, et al. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L. ) on soil labile organic carbon and carbon conversion enzyme activities[J]. Journal of Plant Nutrition and Fertilizers,2019,25(4):525-534. doi: 10.11674/zwyf.18121 [15] LIU X J A, FINLEY B K, MAU R L, et al. The soil priming effect: consistent across ecosystems, elusive mechanisms[J]. Soil Biology and Biochemistry,2020,140:107617. doi: 10.1016/j.soilbio.2019.107617 [16] 孙洪仁, 张吉萍, 江丽华, 等. 中国小麦土壤氮素丰缺指标与适宜施氮量研究[J]. 北方农业学报,2018,46(2):41-46. doi: 10.3969/j.issn.2096-1197.2018.02.08SUN H R, ZHANG J P, GANG L H, et al. Study on the abundance-deficiency indices of soil N and appropriate nitrogen application rates for wheat in China[J]. Journal of Northern Agriculture,2018,46(2):41-46. doi: 10.3969/j.issn.2096-1197.2018.02.08 [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [19] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [20] 刘涌鑫, 毛祥敏, 周勋波. 水氮条件对南亚热带玉米产量及农田土壤有机碳氮组分的影响[J]. 东北农业科学,2022,47(1):66-71.LIU Y X, MAO X M, ZHOU X B. Effects of water and nitrogen conditions on subtropical maize yield and soil organic carbon and nitrogen components in sub-tropical soils[J]. Journal of Northeast Agricultural Sciences,2022,47(1):66-71. [21] 伍旖旎, 许依, 傅童成, 等. 施氮对贫瘠红壤定植芒草根际土有机碳矿化过程的影响[J]. 草地学报,2022,30(4):801-809.WU Y L, XU Y, FU T C, et al. Effects of nitrogen application on organic carbon mineralization in rhizosphere soil of Miscanthus spp. in barren red soil[J]. Acta Agrestia Sinica,2022,30(4):801-809. [22] 全紫曼, 漆燕, 周泽弘, 等. 山黧豆还田与氮肥减施对稻田土壤酶活性有机碳组分及酶活性的影响[J]. 草业科学, 2024, 41(5): 1057-1067.QUAN Z M, QI Y, ZHOU Z H, et al. Effects of returning Lathyrus sativus to field and reducing nitrogen rate on paddy soil labile organic carbon and soil enzyme activities. Pratacultural Science, 2024, 41(5): 1057-1067. [23] 王楠, 陈殿元, 张晋京, 等. 施氮水平对基础肥力不同的玉米田土壤有机碳组分数量的影响[J]. 玉米科学,2016,24(6):114-119.WANG N, CHEN D Y, ZHANG J J, et al. Effect of nitrogen applied levels on the amounts of organic C components from corn field soils with different basic fertilities[J]. Journal of Maize Sciences,2016,24(6):114-119. [24] 张金硕, 李素艳, 孙向阳, 等. 山东省不同植被类型土壤有机碳及其组分分布特征[J]. 土壤,2024,56(2):350-357.ZHANG J S, LI S Y, SUN X Y, et al. Characteristics of soil organic carbon and its components under different vegetation types in Shandong Province[J]. Soils,2024,56(2):350-357. [25] 董扬红, 曾全超, 李娅芸, 等. 黄土高原不同植被类型土壤活性有机碳组分分布特征[J]. 草地学报,2015,23(2):277-284.DONG Y H, ZENG Q C, LI Y Y, et al. The characteristics of soil active organic carbon composition under different vegetation types on the Loess Plateau[J]. Acta Agrestia Sinica,2015,23(2):277-284. [26] 侯赛赛, 白懿杭, 王灿, 等. 土壤有机碳及其活性组分研究进展[J]. 江苏农业科学,2023,51(13):24-33. [27] SZOSTEK M, SZPUNAR-KROK E, PAWLAK R, et al. Effect of different tillage systems on soil organic carbon and enzymatic activity[J]. Agronomy,2022,12(1):208. doi: 10.3390/agronomy12010208 [28] UTOBO E B, TEWARI L. Soil enzymes as bioindicators of soil ecosystem status[J]. Applied ecology and environmental research,2015,13(1):147-169. [29] BRADFORD M A, WIEDER W R, BONAN G B, et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nature Climate Change,2016,6:751-758. doi: 10.1038/nclimate3071 [30] 任静, 刘小勇, 韩富军, 等. 施氮水平对旱塬覆沙苹果园土壤酶活性及果实品质的影响[J]. 农业工程学报,2019,35(8):206-213. doi: 10.11975/j.issn.1002-6819.2019.08.024REN J, LIU X Y, HAN F J, et al. Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in Loess Plateau of Eastern Gansu[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(8):206-213. doi: 10.11975/j.issn.1002-6819.2019.08.024 [31] 肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报,2013,29(21):91-98. doi: 10.3969/j.issn.1002-6819.2013.21.012XIAO X, ZHU W, XIAO L, et al. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(21):91-98. doi: 10.3969/j.issn.1002-6819.2013.21.012 [32] 程滨, 赵瑞芬, 滑小赞, 等. 行间生草对核桃园土壤养分、有机碳组分及酶活性影响[J]. 中国土壤与肥料,2021(6):57-64.CHENG B, ZHAO R F, HUA X Z, et al. Effects of interrow grass on soil nutrients, organic carbon components and enzyme activities in walnut orchard[J]. Soil and Fertilizer Sciences in China,2021(6):57-64. [33] 赵婧, 段磊磊, 王铭, 等. 水文管理措施对长白山区恢复泥炭地土壤酶活性的影响[J]. 生态学杂志, 2022, 41(5): 948-954.ZHAO J, DUAN L L, WANG M, et al. Effects of hydrological managements on soil enzyme activities during peatland restoration in the Changbai Mountains. [J]. Chinese Journal of Ecology, 202, 41(5): 948-954. [34] 郑斯尹, 陈莉莎, 谢德晋. 不同氮肥用量对玉米田土壤酶活性及微生物量碳、氮的影响[J]. 中国水土保持,2019(7):58-60. doi: 10.3969/j.issn.1000-0941.2019.07.020ZHENG S Y, CHEN L S, XIE D J. Effects of different nitrogen application rates on soil enzyme activity and microbial biomass carbon and nitrogen in maize farmland[J]. Soil and Water Conservation in China,2019(7):58-60. doi: 10.3969/j.issn.1000-0941.2019.07.020 [35] NEEMISHA, SHARMA S. Soil enzymes and their role in nutrient cycling[J]. Structure and functions of Pedosphere, 2022. 173-188. [36] 肖华翠, 李雪, 盛浩, 等. 湘西北天然林转换对土壤活性有机碳与酶活性的影响[J]. 水土保持通报, 2023, 43(5): 411-418.XIAO H C, LI X, CHENG H, et al. Effect of native forest conversion on soil labile carbon and enzyme activity in Northwestern Hunan Province[J]. Bulletin of Soil and Water Conservation, 2019, 43(5): 411-418. [37] 马瑞萍, 安韶山, 党廷辉, 等. 黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究[J]. 土壤学报,2014,51(1):104-113. doi: 10.11766/trxb201302050071MA R P, AN S S, DANG Y H, et al. Soil organic carbon and enzymatic activity in aggregates of soils under different plant communities in hilly-gully regions of loess plateau[J]. Acta Pedologica Sinica,2014,51(1):104-113. ⊕ doi: 10.11766/trxb201302050071