Effect of different nitrogen application treatments on the photosynthetic characteristics and nitrogen fertilizer use efficiency of Bainong 207
-
摘要:
为探究百农207(BN207)在不同氮肥管理下的光合特性和氮肥利用效率,从而建立最优氮肥管理、实现绿色高产高效栽培,以BN207为试验材料,设置5种不同氮肥梯度,即0(N0)、120(N120)、180(N180)、240(N240)及360(N360)kg/hm2,分析灌浆中后期小麦光合性能、叶绿素荧光参数和叶面积指数(LAI)的变化,及其对生物量、氮肥利用效率和产量的影响。结果表明,与N0相比,N180、N240及N360组BN207叶绿素荧光参数中的FV/FM(暗适应下PS Ⅱ的最大量子产额)、ETO/RC(单位反应中心捕获的用于电子传递的能量)、LAI、籽粒氮素积累量、生物量及产量分别上升0.71%~4.87%、3.45%~5.70%、117.22%~157.64%、62.67%~63.98%、39.30%~57.01%及27.87%~28.92%,OJIP曲线中各特征位点的峰值和氮肥利用效率均下降,但施氮组间无显著差异。此外,BN207在N180组的净光合速率(Pn)显著高于其他组,表明BN207在N180组更有利于实现绿色高产高效的目标。线性加平台结果表明,当施氮量达到172.14 kg/hm2时,小麦的产量达到平台值。综上所述,BN207的最佳施肥量为172.14 kg/hm2,该结果可为BN207在华北平原地区高产栽培管理提供理论依据。
Abstract:In order to investigates the photosynthetic characteristics and nitrogen use efficiency of Bainong207(BN207) under different nitrogen managements so as to establish optimal nitrogen management and achieve the goal of green, high-yield, and efficient cultivation, using BN207 as the experimental material, five different nitrogen gradients were set, namely 0 (N0), 120 (N120), 180 (N180), 240 (N240), and 360 (N360) kg/hm². The changes in photosynthetic performance, chlorophyll fluorescence parameters, and leaf area index (LAI) during the mid to late grain filling stages of wheat, as well as their effects on biomass, nitrogen use efficiency, and yield. were analyzed. The results indicated that compared to N0, in N180, N240 and N360 groups, the chlorophyll fluorescence parameters of BN207, including FV/FM (the maximum quantum yield of PS Ⅱ under dark adaptation), ETO/RC (the energy captured by a unit reaction center for electron transport), LAI, the accumulation of grain nitrogen, biomass, and yield, increased by 0.71%-4.87%, 3.45%-5.70%, 117.22%-157.64%, 62.67%-53.98%, 39.30%-57.01%, and 27.87%-28.92%, respectively. The peak values of the OJIP curve and nitrogen use efficiency in all groups decreased, but there were no significant differences among the nitrogen treatments. Additionally, the net photosynthetic rate (Pn) of BN207 in the N180 group was significantly higher than in other groups, indicating that BN207 was more conducive to achieving the goal of green, high-yield, and efficient cultivation in the N180 group. The linear plus plateau results indicated that when the nitrogen application reached 172.14 kg/hm², the yield of wheat reached a plateau. In conclusion, the optimal fertilization rate for BN207 was 172.14 kg/hm², and this result could provide a theoretical basis for high-yield cultivation management of BN207 in the North China Plain region.
-
表 1 0~20 cm土壤基本理化性质
Table 1. Basic physicochemical properties of 0-20 cm soil
土壤质地 土壤容重/
(g/cm3)有机质/
(g/kg)全氮/
(g/kg)速效磷/
(mg/kg)速效钾/
(mg/kg)壤土 1.38 11.60 0.89 18.50 106 表 2 叶绿素荧光参数的含义
Table 2. Meaning of chlorophyll fluorescence parameters
参数 含义 FV/FM 暗适应下PS Ⅱ的最大量子产额 VJ 在J点的相对可变荧光强度 SM 标准化后的OJIP荧光诱导曲线、
荧光强度(F)为FM及y轴之间的面积ABS/RC 单位反应中心吸收的能量 DIO/RC 单位反应中心耗散掉的能量 TRO/RC 单位反应中心捕获的用于还原QA的能量 ETO/RC 单位反应中心捕获的用于电子传递的能量 Ft 光化光(AL)照光后,时间t发出的荧光 FO 最小荧光,所有PS Ⅱ反应中心全部打开 FM 最大荧光,所有PS Ⅱ反应中心全部关闭 VOP VOP=(Ft−FO)/(FM−FO) ∆VOP ∆VOP=VOP(处理)−VOP(CK) 表 3 不同施氮梯度对BN207生物量、产量及其构成因素的影响
Table 3. Effects of different nitrogen application gradients on the biomass, yield, and constituent factors of BN207
处理组 有效穗数/(104穗/hm2) 穗粒数/穗 千粒重/g 产量/(kg/hm2) 生物量/(kg/hm2) 收获指数 N0 363.44±32.92c 35.86±1.06c 46.94±1.14a 5 798.54±1 101.78b 13 680.60±1 360.40b 0.35±0.04b N120 430.00±16.33b 37.53±1.82b 44.33±2.09b 7 192.08±1 149.12a 16 021.47±4 315.56b 0.42±0.03a N180 488.75±15.37a 38.68±1.99ab 43.62±1.63b 7 436.75±633.29a 19 057.46±2 785.89a 0.40±0.03a N240 501.57±26.25a 38.35±2.78ab 42.68±2.51bc 7 475.37±753.31a 21 185.62±1 228.29a 0.35±0.02b N360 502.50±17.85a 39.75±2.76a 41.30±2.44c 7 414.40±378.27a 21 479.35±1 313.23a 0.35±0.01b 注:不同字母表示不同处理组间在0.05水平下差异显著。全文同。 表 4 不同施氮处理与BN207产量构成因素、生物量指标的相关性
Table 4. Correlation between different nitrogen application treatments and yield components and biomass index of BN207
项目 年份 施氮量 有效穗数 穗粒数 千粒重 籽粒产量 收获指数 籽粒氮素
积累量氮肥利
用效率生物量 LAI Pn 年份 1 施氮量 1.000** 1 有效穗数 1.000** 0.656 1 穗粒数 −1.000** −0.514 0.191 1 千粒重 −1.000** −0.053 −0.212 0.118 1 籽粒产量 1.000** 0.701 0.799** 0.398** 0.154 1 收获指数 1.000** 0.701 −0.076 −0.044 0.203 0.034 1 籽粒氮素积累量 1.000** 0.868 0.068 0.271 −0.025 0.191 0.109 1 氮肥利用效率 −1.000** 0.762 −0.043 −0.076 0.302 0.000 −0.047 −0.878** 1 生物量 1.000** 0.833 0.212 0.290 −0.053 0.284 0.503** 0.716** −0.440* 1 LAI −1.000** 0.491 −0.037 −0.235 −0.092 −0.020 0.334* −0.138 −0.074 0.045 1 Pn −1.000** 0.771 −0.295 0.214 −0.146 −0.189 0.468** 0.320 −0.244 0.379* 0.221 1 注: *代表P<0.05,**代表P<0.01。全文同。 表 5 不同施氮处理与BN207叶绿素荧光参数和光合指标的相关性
Table 5. Correlation between different nitrogen application treatments and BN207 chlorophyll fluorescence parameters and photosynthesis
项目 年份 施氮量 Pn FV/FM VJ SM ABS/RC DIO/RC TRO/RC ETO/RC 年份 1 施氮量 1.000** 1 Pn −1.000** 0.771 1 FV/FM 1.000** −0.258 −0.390* 1 VJ −1.000** 0.618 0.018 −0.637** 1 SM −1.000** 0.308 −0.190 0.264 −0.527** 1 ABS/RC 1.000** 0.419 0.511** −0.784** 0.619** −0.618** 1 DIO/RC −1.000** 0.354 0.473** −0.948** 0.641** −0.434** 0.933** 1 TRO/RC 1.000** 0.424 0.495** −0.572** 0.539** −0.707** 0.956** 0.786** 1 ETO/RC 1.000** −0.372 0.420* 0.144 −0.545** −0.151 0.267 0.062 0.408** 1 -
[1] 胡诚, 乐群芬, 孙斌, 等. 氮肥用量与施用方法对土壤养分与小麦生长的影响[J]. 西南农业学报,2017,30(9):2017-2023.HU C, LE Q F, SUN B, et al. Effects of nitrogen fertilizer amount and application method on soil nutrient and wheat growth[J]. Southwest China Journal of Agricultural Sciences,2017,30(9):2017-2023. [2] 窦晓静, 张彦红, 耿庆龙, 等. 施氮量对春小麦生长及土壤养分积累的影响[J]. 新疆农业科学,2017,54(7):1191-1199.DOU X J, ZHANG Y H, GENG Q L, et al. Effects of nitrogen application amount on the growth and soil nutrient accumulation of spring wheat[J]. Xinjiang Agricultural Sciences,2017,54(7):1191-1199. [3] 安婷婷, 侯小畔, 周亚男, 等. 氮肥用量对小麦开花后根际土壤特性和产量的影响[J]. 中国农业科学,2017,50(17):3352-3364. doi: 10.3864/j.issn.0578-1752.2017.17.010AN T T, HOU X P, ZHOU Y N, et al. Effects of nitrogen fertilizer rates on rhizosphere soil characteristics and yield after anthesis of wheat[J]. Scientia Agricultura Sinica,2017,50(17):3352-3364. doi: 10.3864/j.issn.0578-1752.2017.17.010 [4] 陈源源, 孙艺. 未来30年我国粮食增产潜力与保障能力研究[J]. 四川农业大学学报,2022,40(3):312-318.CHEN Y Y, SUN Y. Study on the production increasing potential and guarantee capability of grain in China in the next 30 years[J]. Journal of Sichuan Agricultural University,2022,40(3):312-318. [5] 薛雪, 毛宇鹏, 张洪. 珠三角典型区域农田小区尺度氮、磷、镉、砷输移特征与控制对策[J]. 环境工程技术学报,2023,13(3):1179-1186. doi: 10.12153/j.issn.1674-991X.20220391XUE X, MAO Y P, ZHANG H. Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta Region[J]. Journal of Environmental Engineering Technology,2023,13(3):1179-1186. doi: 10.12153/j.issn.1674-991X.20220391 [6] 蔡敏, 崔娜欣, 张旭, 等. 稻秸秆添加强化沉水植物湿地对农田径流中不同形态氮的去除效果[J]. 环境工程技术学报,2023,13(5):1829-1838. doi: 10.12153/j.issn.1674-991X.20230043CAI M, CUI N X, ZHANG X, et al. Removal efficiency of different forms of nitrogen from farmland runoff by adding rice straw in submerged plant wetland[J]. Journal of Environmental Engineering Technology,2023,13(5):1829-1838. doi: 10.12153/j.issn.1674-991X.20230043 [7] CHANG J F, HAVLÍK P, LECLÈRE D, et al. Reconciling regional nitrogen boundaries with global food security[J]. Nature Food,2021,2(9):700-711. doi: 10.1038/s43016-021-00366-x [8] 易厚燕, 吴爱平, 庞燕, 等. 水温和磷浓度对满江红氮磷吸收的影响[J]. 环境工程技术学报,2014,4(5):436-441. doi: 10.3969/j.issn.1674-991X.2014.05.069YI H Y, WU A P, PANG Y, et al. Effects of temperature and phosphorus concentration on nitrogen and phosphorus uptake of Azolla imbricata[J]. Journal of Environmental Engineering Technology,2014,4(5):436-441. doi: 10.3969/j.issn.1674-991X.2014.05.069 [9] SILVA E N, FERREIRA-SILVA S L, de VASCONCELOS FONTENELE A, et al. Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants[J]. Journal of Plant Physiology,2010,167(14):1157-1164. doi: 10.1016/j.jplph.2010.03.005 [10] 张雷明, 上官周平, 毛明策, 等. 长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J]. 应用生态学报,2003,14(5):695-698. doi: 10.3321/j.issn:1001-9332.2003.05.010ZHANG L M, SHANGGUAN Z P, MAO M C, et al. Effects of long-term application of nitrogen fertilizer on leaf chlorophyll fluorescence of upland winter wheat[J]. Chinese Journal of Applied Ecology,2003,14(5):695-698. doi: 10.3321/j.issn:1001-9332.2003.05.010 [11] 郭天财, 宋晓, 马冬云, 等. 施氮水平对冬小麦旗叶光合特性的调控效应[J]. 作物学报,2007,33(12):1977-1981. doi: 10.3321/j.issn:0496-3490.2007.12.010GUO T C, SONG X, MA D Y, et al. Effects of nitrogen application rates on photosynthetic characteristics of flag leaves in winter wheat (Triticum aestivum L. )[J]. Acta Agronomica Sinica,2007,33(12):1977-1981. doi: 10.3321/j.issn:0496-3490.2007.12.010 [12] ZHANG X C, YU X F, MA Y F. Effect of nitrogen application and elevated CO2 on photosynthetic gas exchange and electron transport in wheat leaves[J]. Photosynthetica,2013,51(4):593-602. doi: 10.1007/s11099-013-0059-5 [13] ACRECHE M M, BRICEÑO-FÉLIX G, MARTÍN SÁNCHEZ J A, et al. Radiation interception and use efficiency as affected by breeding in mediterranean wheat[J]. Field Crops Research,2009,110(2):91-97. doi: 10.1016/j.fcr.2008.07.005 [14] ZHANG Y P, ZHANG Y H, WANG Z M, et al. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions[J]. Field Crops Research,2011,123(3):187-195. doi: 10.1016/j.fcr.2011.04.014 [15] OLESEN J E, BERNTSEN J, HANSEN E M, et al. Crop nitrogen demand and canopy area expansion in winter wheat during vegetative growth[J]. European Journal of Agronomy,2002,16(4):279-294. doi: 10.1016/S1161-0301(01)00134-4 [16] 王文政, 李亚静, 张敏, 等. 施氮量对强筋小麦光合、产量、蛋白质含量和加工品质的影响[J]. 麦类作物学报,2024,44(4):462-471.WANG W Z, LI Y J, ZHANG M, et al. Effects of nitrogen application rate on photosynthetic characteristics, yield, protein content and processing quality of strong gluten wheat[J]. Journal of Triticeae Crops,2024,44(4):462-471. [17] 郑梦瑶, 李豪杰, 王文定, 等. 不同调亏灌溉处理对高产矮秆小麦光合性能的影响[J]. 灌溉排水学报,2023,42(8):55-62.ZHENG M Y, LI H J, WANG W D, et al. Effects of regulated deficit irrigation on photosynthesis of high-yield dwarf wheat cultivar[J]. Journal of Irrigation and Drainage,2023,42(8):55-62. [18] 杨晴, 李雁鸣, 肖凯, 等. 不同施氮量对小麦旗叶衰老特性和产量性状的影响[J]. 河北农业大学学报,2002,25(4):20-24. doi: 10.3969/j.issn.1000-1573.2002.04.005YANG Q, LI Y M, XIAO K, et al. Effect of different amount of nitrogen on flag leaf senescence and yield components of wheat[J]. Journal of Hebei Agricultural University,2002,25(4):20-24. doi: 10.3969/j.issn.1000-1573.2002.04.005 [19] 马东辉, 赵长星, 王月福, 等. 施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响[J]. 生态学报,2008,28(10):4896-4901. doi: 10.3321/j.issn:1000-0933.2008.10.034MA D H, ZHAO C X, WANG Y F, et al. Effects of nitrogen fertilizer rate and post anthesis soil water content on photosynthetic characteristics in flag leaves and yield of wheat[J]. Acta Ecologica Sinica,2008,28(10):4896-4901. doi: 10.3321/j.issn:1000-0933.2008.10.034 [20] CAMPBELL C S, HEILMAN J L, McINNES K J, et al. Seasonal variation in radiation use efficiency of irrigated rice[J]. Agricultural and Forest Meteorology,2001,110(1):45-54. doi: 10.1016/S0168-1923(01)00277-5 [21] ZHANG L, van der WERF W, BASTIAANS L, et al. Light interception and utilization in relay intercrops of wheat and cotton[J]. Field Crops Research,2008,107(1):29-42. doi: 10.1016/j.fcr.2007.12.014 [22] WANG Z, YIN Y, HE M, et al. Allocation of photosynthates and grain growth of two wheat cultivars with different potential grain growth in response to pre- and post-anthesis shading[J]. Journal of Agronomy and Crop Science,2003,189(5):280-285. doi: 10.1046/j.1439-037X.2003.00041.x [23] LI H W, JIANG D, WOLLENWEBER B, et al. Effects of shading on morphology, physiology and grain yield of winter wheat[J]. European Journal of Agronomy,2010,33(4):267-275. doi: 10.1016/j.eja.2010.07.002 [24] CHATURVEDI G, INGRAM K. Growth and yield of lowland rice in response to shade and drainage[J]. Philippine Journal of Crop Science,1989,14:61-67. [25] ACRECHE M M, BRICEÑO-FÉLIX G, SÁNCHEZ J A M, et al. Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain[J]. European Journal of Agronomy,2008,28(3):162-170. doi: 10.1016/j.eja.2007.07.001 [26] 柴健, 于爱忠, 王玉珑, 等. 绿洲灌区绿肥还田配施化学氮肥对小麦干物质积累及产量的影响[J]. 西北农业学报,2024,33(5):787-797. doi: 10.7606/j.issn.1004-1389.2024.05.002CHAI J, YU A Z, WANG Y L, et al. Effect of comnimed green manure return and chemical nitrogen fertilizer on dry matter accumulation and wheat yield in oasis irrigated area[J]. Acta Agriculturae Boreali-occidentalis Sinica,2024,33(5):787-797. doi: 10.7606/j.issn.1004-1389.2024.05.002 [27] 肖大康, 胡仁, 韩天富, 等. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学,2023,37(5):529-542.XIAO D K, HU R, HAN T F, et al. Effects of nitrogen fertilizer consumption and operation on rice yield and its components in China: a meta-analysis[J]. Chinese Journal of Rice Science,2023,37(5):529-542. [28] 王立红, 张宏芝, 王重, 等. 新疆冬小麦不同产量水平群体特性分析[J]. 麦类作物学报,2020,40(5):594-600. doi: 10.7606/j.issn.1009-1041.2020.05.10WANG L H, ZHANG H Z, WANG C, et al. Population characteristics of different yield levels of winter wheat in Xinjiang[J]. Journal of Triticeae Crops,2020,40(5):594-600. doi: 10.7606/j.issn.1009-1041.2020.05.10 [29] 吴姗姗, 徐学欣, 张霞, 等. 不同品种冬小麦苗期叶绿素荧光参数与抗旱性关系研究[J]. 华北农学报,2020,35(6):90-99. doi: 10.7668/hbnxb.20191258WU S S, XU X X, ZHANG X, et al. Relationship analysis of chlorophyll fluorescence parameters and drought resistance in different winter wheat varieties at seedling stage[J]. Acta Agriculturae Boreali-Sinica,2020,35(6):90-99. doi: 10.7668/hbnxb.20191258 [30] GOVINDJE E. Sixty-three years since Kautsky: chlorophyll a fluorescence[J]. Functional Plant Biology,1995,22(2):131. doi: 10.1071/PP9950131 [31] STRASSER B J, STRASSER R J. Measuring fast fluorescence transients to address environmental questions: the JIP-test[M]//Photosynthesis: from light to biosphere. Dordrecht: Springer Netherlands, 1995: 4869-4872. [32] 李鹏民, 高辉远, STRASSER R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报,2005,31(6):559-566.LI P M, GAO H Y, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology,2005,31(6):559-566. □