留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同土地利用方式和气候区域下土壤溶解性有机碳差异特征

李亚林 练金山 任凤玲

李亚林,练金山,任凤玲.不同土地利用方式和气候区域下土壤溶解性有机碳差异特征[J].环境工程技术学报,2024,14(5):1427-1435 doi: 10.12153/j.issn.1674-991X.20240292
引用本文: 李亚林,练金山,任凤玲.不同土地利用方式和气候区域下土壤溶解性有机碳差异特征[J].环境工程技术学报,2024,14(5):1427-1435 doi: 10.12153/j.issn.1674-991X.20240292
LI Y L,LIAN J S,REN F L.Characteristics of dissolved organic carbon under various land use types and climatic regions[J].Journal of Environmental Engineering Technology,2024,14(5):1427-1435 doi: 10.12153/j.issn.1674-991X.20240292
Citation: LI Y L,LIAN J S,REN F L.Characteristics of dissolved organic carbon under various land use types and climatic regions[J].Journal of Environmental Engineering Technology,2024,14(5):1427-1435 doi: 10.12153/j.issn.1674-991X.20240292

不同土地利用方式和气候区域下土壤溶解性有机碳差异特征

doi: 10.12153/j.issn.1674-991X.20240292
基金项目: 国家重点研发计划项目( 2023YFC3707703)
详细信息
    作者简介:

    李亚林(1995—),男,博士研究生,主要从事土壤碳循环研究,henanyalin@163.com

    通讯作者:

    任凤玲(1992—),女,博士,主要从事土壤培肥与肥力演变及土壤改良等方面的研究,flren0302@163.com

  • 中图分类号: X53

Characteristics of dissolved organic carbon under various land use types and climatic regions

  • 摘要:

    土壤溶解性有机碳(DOC)是土壤有机碳库的重要组成部分,探讨不同土地利用方式下土壤有机碳(SOC)和DOC含量、DOC分配比例(DOC/SOC)及其差异性特征,对于深刻认识SOC周转及其可持续管理具有重要意义。通过搜集、提取2000—2024年我国已发表的涉及农田、林地和草地3种土地利用方式下表层土壤(0~20 cm)DOC含量的相关数据,共获得116篇目标文献,得到549组匹配数据;定量分析不同气候区和土壤类型条件下,不同土地利用方式(农田、林地和草地)对DOC含量影响及其SOC与DOC的相互关系。结果表明:不同土地利用方式下,SOC和DOC含量差异显著,即林地中SOC和DOC含量均高于草地和农田。不同气候区,3种土地利用方式下DOC与SOC之间均呈现极显著的正相关关系(P<0.01),且DOC分配比例各不相同。亚热带季风性气候区,林地土壤中DOC所占比例的均值为2.30%,显著高于农田(0.87%)和草地(0.66%)(P<0.05);温带季风性气候区,3种土地利用方式下DOC分配比例无显著差异(P>0.05),其中林地(1.27%)>农田(1.18%)>草地(1.03%);温带大陆性气候区,农田、林地和草地土壤中DOC分配比例分别为1.76%、1.43%和1.28%,但无显著差异(P>0.05)。农田中不同类型土壤的DOC分配比例存在显著差异,其中褐土的DOC分配比例最高,均值为1.61%,其次是灰漠土(1.38%)、黑土(1.10%)、红壤(0.99%)和潮土(0.89%),而水稻土最低(0.74%)。研究结果对于揭示不同土地利用方式下的DOC变化具有重要意义,同时为不同土地利用方式下DOC管理提供参考。

     

  • 图  1  不同气候区农田、林地和草地表层土壤DOC的分配比例

    注:n为样本数。不同小写字母表示不同分组间差异显著(P<0.05)。箱体中间实线代表中位数,正方形代表平均值,上下两条误差线分别代表95%和5%的置信区间,上下圆点分别代表最大值和最小值。全文同。

    Figure  1.  Allocation proportion of DOC in surface soil of cropland, forestland and grassland in different climate regions

    图  2  不同气候区3种土地利用方式下SOC和DOC相互关系

    注:阴影部分表示95%置信区间,全文同。

    Figure  2.  Relationship between SOC and DOC under three land use types in different climatic zones

    图  3  农田中不同土壤类型的DOC分配比例

    注:数字后面不同小写字母表示各分组间差异显著(P<0.05)。

    Figure  3.  Allocation proportion of DOC under different soil types of cropland

    图  4  农田中不同土壤类型的DOC与SOC关系

    Figure  4.  Relationship between DOC and SOC in different soil types of cropland

    表  1  不同土地利用方式下土壤中SOC和DOC的含量

    Table  1.   Contents of soil organic carbon (SOC) and dissolved organic carbon (DOC) under different land use types

    气候区 土地利用方式 样本数(n SOC含量/(g/kg) DOC含量/(mg/kg)
    平均值 范围 平均值 范围
    亚热带季风性气候区 农田 179 14.70±0.43β 4.22~30.05 117.86±6.78b 16.85~339.23
    林地 113 17.62±0.63α 4.58~36.33 405.83±30.56a 20.99~1682.08
    草地 26 13.20±1.82β 3.90~52.03 76.37±19.70b 0.14~469.78
    温带季风性气候区 农田 116 15.81±0.73β 1.19~36.91 178.14±13.74b 6.38~612.90
    林地 29 19.42±1.95α 5.98~41.45 210.29±20.35a 61.72~481.52
    草地 19 12.05±2.34βγ 2.25~42.41 105.37±18.7b 35.13~318.81
    温带大陆性气候区 农田 26 7.88±0.63α 2.46~13.22 136.79±17.78a 16.57~303.10
    林地 21 10.89±1.85α 2.66~34.72 162.82±34.62a 15.28~515.49
    草地 20 9.64±1.28α 2.36~22.40 126.66±23.38a 11.38~372.75
      注:同列不同字母α、β、γ和a、b、c分别表示相同气候区不同土地利用方式间SOC和DOC含量在5%水平上差异显著。表中平均值均为平均值±SD。
    下载: 导出CSV

    表  2  不同土地利用方式下SOC和DOC的关系

    Table  2.   Correlation between soil dissolved organic carbon(y) and soil organic carbon (x) under different land use types

    气候区 土地利用方式 样本数(n 方程 R2 斜率
    亚热带季风性气候区 全部 318 y=17.86x−62.06 0.22** 17.86
    农田 179 y=5.01x+44.22 0.10** 5.01 b
    林地 113 y=26.28x−57.21 0.29** 26.28 a
    草地 26 y=8.34x−33.77 0.58** 8.34 b
    温带季风性气候区 全部 164 y=8.87x+38.04 0.28** 8.87
    农田 116 y=9.94x+21.04 0.28** 9.94 a
    林地 29 y=6.37x+86.59 0.35** 6.37 a
    草地 19 y=6.78x+23.65 0.70** 6.78 a
    温带大陆性气候区 全部 67 y=16.61x−13.37 0.72** 16.61
    农田 26 y=16.98x+3.02 0.33** 16.98 a
    林地 21 y=17.49x−27.59 0.87** 17.49 a
    草地 20 y=16.05x−28.16 0.77** 16.05 a
      注:不同字母分别表示斜率在5%水平上差异显著(P<0.05);**表示在P<0.01水平上显著相关。方程中,y为DOC含量,x为SOC含量。全文同。
    下载: 导出CSV
  • [1] SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry,2000,48(1):7-20. doi: 10.1023/A:1006247623877
    [2] HANSSON K, KLEJA D B, KALBITZ K, et al. Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots[J]. Soil Biology and Biochemistry,2010,42(2):178-185. doi: 10.1016/j.soilbio.2009.10.013
    [3] 陈安冉, 王祖伟. 土壤中水溶性有机碳研究进展[C]//2012中国环境科学学会学术年会论文集. 南宁: 中国环境科学学会, 2012: 811-816.
    [4] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience,2009,2:37-41. doi: 10.1038/ngeo391
    [5] ANDREASSON F, BERGKVIST B, BÅÅTH E. Bioavailability of DOC in leachates, soil matrix solutions and soil water extracts from beech forest floors[J]. Soil Biology and Biochemistry,2009,41(8):1652-1658. doi: 10.1016/j.soilbio.2009.05.005
    [6] MARINARI S, LIBURDI K, FLIESSBACH A, et al. Effects of organic management on water-extractable organic matter and C mineralization in European arable soils[J]. Soil and Tillage Research,2010,106(2):211-217. doi: 10.1016/j.still.2009.12.010
    [7] SIMONSSON M, KAISER K, DANIELSSON R, et al. Estimating nitrate, dissolved organic carbon and DOC fractions in forest floor leachates using ultraviolet absorbance spectra and multivariate analysis[J]. Geoderma,2005,124(1/2):157-168.
    [8] 俞元春, 何晟, 李炳凯, 等. 杉林土壤溶解有机碳吸附及影响因素分析[J]. 南京林业大学学报(自然科学版),2005,29(2):15-18.

    YU Y C, HE S, LI B K, et al. The dissolved organic carbon(DOC) adsorption and its influence factor on the soil of Chinese fir plantation[J]. Journal of Nanjing Forestry University,2005,29(2):15-18.
    [9] 李红伟, 张建国. 土壤可溶性有机碳研究进展及展望[C]//2018中国环境科学学会科学技术年会论文集. 合肥: 中国环境科学学会, 2018: 767-773.
    [10] 张金波, 宋长春, 杨文燕. 土地利用方式对土壤水溶性有机碳的影响[J]. 中国环境科学,2005,25(3):343-347.

    ZHANG J B, SONG C C, YANG W Y. Influence of land-use type on soil dissolved organic carbon in the Sanjiang Plain[J]. China Environmental Science,2005,25(3):343-347.
    [11] McELMURRY S P. Characterization of dissolved organic carbon: assessment of copper complexation and export of carbon from watersheds as function of land use[D]. Michigan: Michigan State University, 2008.
    [12] 何冬梅, 王磊, 冯育青, 等. 不同土地利用类型对土壤可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版),2016,40(6):15-19.

    HE D M, WANG L, FENG Y Q, et al. Effects of land use type on soil dissolved organic carbon in a land reclamation area from lake[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2016,40(6):15-19.
    [13] 李太魁, 朱波, 王小国, 等. 土地利用方式对土壤活性有机碳含量影响的初步研究[J]. 土壤通报,2012,43(6):1422-1426.

    LI T K, ZHU B, WANG X G, et al. A preliminary study on the effects of land use on the contents of soil active organic carbon[J]. Chinese Journal of Soil Science,2012,43(6):1422-1426.
    [14] 崔东, 肖治国, 赵玉, 等. 不同土地利用类型对伊犁地区土壤活性有机碳库和碳库管理指数的影响[J]. 水土保持研究,2017,24(1):61-67.

    CUI D, XIAO Z G, ZHAO Y, et al. Effects of different land use patterns on soil active organic carbon pool and carbon pool management index in Yili area, Xinjiang Uygur Autonomous Region[J]. Research of Soil and Water Conservation,2017,24(1):61-67.
    [15] 李翔. 不同土地利用方式土壤有机碳及其活性组分特征研究[D]. 雅安: 四川农业大学, 2014.
    [16] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
    [17] MEBIUS L J. A rapid method for the determination of organic carbon in soil[J]. Analytica Chimica Acta,1960,22:120-124. doi: 10.1016/S0003-2670(00)88254-9
    [18] 徐虎, 申华平, 张文菊, 等. 长期不同管理措施下红壤剖面碳、氮储量变化特征[J]. 中国土壤与肥料,2016(4):24-31.

    XU H, SHEN H P, ZHANG W J, et al. Variation characteristics of soil organic carbon and total nitrogen storage in red soil under various long-term managements[J]. Soil and Fertilizer Sciences in China,2016(4):24-31.
    [19] COOK B D, ALLAN D L. Dissolved organic carbon in old field soils: compositional changes during the biodegradation of soil organic matter[J]. Soil Biology and Biochemistry,1992,24(6):595-600. doi: 10.1016/0038-0717(92)90085-C
    [20] 柳敏, 宇万太, 姜子绍, 等. 土壤溶解性有机碳(DOC)的影响因子及生态效应[J]. 土壤通报,2007,38(4):758-764.

    LIU M, YU W T, JIANG Z S, et al. Influencing factors and ecological effects of dissolved organic carbon in soil[J]. Chinese Journal of Soil Science,2007,38(4):758-764.
    [21] 路丹, 何明菊, 区惠平, 等. 耕作方式对稻田土壤活性有机碳组分、有机碳矿化以及腐殖质特征的影响[J]. 土壤通报,2014,45(5):1144-1150.

    LU D, HE M J, OU H P, et al. Effects of tillage patterns on the labile organic carbon components, organic carbon mineralization and humus characteristics in paddy soil[J]. Chinese Journal of Soil Science,2014,45(5):1144-1150.
    [22] GAI X P, LIU H B, LIU J, et al. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain[J]. Science of the Total Environment,2019,650:2251-2259. doi: 10.1016/j.scitotenv.2018.09.275
    [23] HE D M, RUAN H H. Long term effect of land reclamation from lake on chemical composition of soil organic matter and its mineralization[J]. PLoS One,2014,9(6):e99251. doi: 10.1371/journal.pone.0099251
    [24] MERILÄ P, MALMIVAARA-LÄMSÄ M, SPETZ P, et al. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest[J]. Applied Soil Ecology,2010,46(2):259-267. doi: 10.1016/j.apsoil.2010.08.003
    [25] 王渊刚, 罗格平, 冯异星, 等. 天山北麓不同土地覆被下土壤有机碳垂直分布特征[J]. 干旱区研究,2013,30(5):913-918.

    WANG Y G, LUO G P, FENG Y X, et al. Vertical distribution of soil organic carbon in different land cover types in northern piedmont of the Tianshan Mountains[J]. Arid Zone Research,2013,30(5):913-918.
    [26] 姜培坤. 不同林分下土壤活性有机碳库研究[J]. 林业科学,2005,41(1):10-13.

    JIANG P K. Soil active carbon pool under different types of vegetation[J]. Scientia Silvae Sinicae,2005,41(1):10-13.
    [27] MUÑOZ C, MONREAL C M, SCHNITZER M, et al. Influence of Acacia caven (Mol) coverage on carbon distribution and its chemical composition in soil organic carbon fractions in a Mediterranean-type climate region[J]. Geoderma,2008,144(1/2):352-360.
    [28] JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications,2000,10(2):423. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [29] FRÖBERG M, KLEJA D B, BERGKVIST B, et al. Dissolved organic carbon leaching from a coniferous forest floor: a field manipulation experiment[J]. Biogeochemistry,2005,75(2):271-287. doi: 10.1007/s10533-004-7585-y
    [30] PARK J H, MATZNER E. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux[J]. Biogeochemistry,2003,66(3):265-286. doi: 10.1023/B:BIOG.0000005341.19412.7b
    [31] KLOTZBÜCHER T, KAISER K, STEPPER C, et al. Long-term litter input manipulation effects on production and properties of dissolved organic matter in the forest floor of a Norway spruce stand[J]. Plant and Soil,2012,355(1):407-416.
    [32] 王春阳, 周建斌, 夏志敏, 等. 黄土高原区不同植物凋落物可溶性有机碳含量及其降解[J]. 应用生态学报,2010,21(12):3001-3006.

    WANG C Y, ZHOU J B, XIA Z M, et al. Soluble organic carbon in plant litters on Loess Plateau: content and biodegradability[J]. Chinese Journal of Applied Ecology,2010,21(12):3001-3006.
    [33] 何冬梅. 不同土地利用方式土壤有机碳结构及矿化特征[D]. 南京: 南京林业大学, 2014.
    [34] 王莹. 围湖造田不同土地利用方式对土壤有机碳库的影响[D]. 南京: 南京林业大学, 2010.
    [35] 房飞, 唐海萍, 李滨勇. 不同土地利用方式对土壤有机碳及其组分影响研究[J]. 生态环境学报,2013,22(11):1774-1779.

    FANG F, TANG H P, LI B Y. Effects of land use type on soil organic carbon and its fractions[J]. Ecology and Environmental Sciences,2013,22(11):1774-1779.
    [36] CHRIST M J, DAVID M B. Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol[J]. Soil Biology and Biochemistry,1996,28(9):1191-1199. doi: 10.1016/0038-0717(96)00120-4
    [37] 刘芙蓉, 张咏梅, 邓书林. 增温和CO2浓度加倍对川西亚高山针叶林土壤可溶性氮的影响[J]. 生态学报,2016,36(3):652-660.

    LIU F R, ZHANG Y M, DENG S L. Effects of elevated temperature and CO2 concentration doubling on soil total soluble nitrogen in subalpine coniferous forest of western Sichuan, China[J]. Acta Ecologica Sinica,2016,36(3):652-660.
    [38] 赵光影, 江姗, 邵宗仁. 小兴安岭森林沼泽湿地土地利用变化对土壤活性碳组分的影响[J]. 水土保持通报,2017,37(6):68-74.

    ZHAO G Y, JIANG S, SHAO Z R. Effects on component of activated carbon in soil under different patterns of land use in Lesser Khingan Mountains[J]. Bulletin of Soil and Water Conservation,2017,37(6):68-74.
    [39] 朱晓婷, 王克勤, 陈敏全, 等. 昆明松华坝水源区不同土地利用方式对土壤有机碳及活性有机碳组分的影响[J]. 东北林业大学学报,2016,44(2):26-30.

    ZHU X T, WANG K Q, CHEN M Q, et al. Effects of three different land use types on soil organic carbon and active organic carbon fractions in water source area of Songhuaba, Kunming[J]. Journal of Northeast Forestry University,2016,44(2):26-30.
    [40] 张甲珅, 陶澍, 曹军. 土壤中水溶性有机碳测定中的样品保存与前处理方法[J]. 土壤通报,2000,31(4):174-176.

    ZHANG J S, TAO S, CAO J. Soil sample preservation and pretreatment for water soluble organic carbon determination[J]. Chinese Journal of Soil Science,2000,31(4):174-176. ◇
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  20
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 录用日期:  2024-07-15
  • 修回日期:  2024-06-12

目录

    /

    返回文章
    返回