Evaluation of the carbon footprint of watermelon fertilization regimes in young orchards
-
摘要:
近些年我国长江中下游地区果园套种西瓜的种植模式受到广泛关注。为探讨果园套种西瓜在不同施肥模式下的碳排放,于湖南省伊塘镇的幼龄桔园开展田间试验,设置西瓜不施肥(CK)、常规单施化肥(NPK)和有机无机配施(NPKM)模式,探讨3种施肥模式下幼龄果园套种西瓜的产量和净收益差异,并利用生命周期评价方法定量分析西瓜生产生命周期碳足迹,筛选不同施肥模式下对碳排放贡献最大的农业生产要素。结果表明:与CK相比,施肥显著增加了西瓜产量和温室气体排放量,且NPK和NPKM净收益分别增加176.9%和185.2%。CK、NPK和NPKM的总碳排放量分别为1 897.19、20 682.54和19 889.19 kg/hm2(以CO2当量计),其中化肥等农资从原料开采到成品产出的生产阶段产生的温室气体是西瓜生命周期碳排放的主要来源。与NPK相比,NPKM的单位面积碳足迹、单位产量碳足迹和单位净收益碳足迹分别降低30.4%、28.8%和32.4%。碳排放贡献分析结果表明,化肥生产是NPK(78.2%)和NPKM(42.9%)碳足迹的主要贡献因子。综上所述,结合碳足迹和经济效益分析,在幼龄果园套种西瓜的种植模式下,有机无机配施的施肥管理模式优于不施肥和单施化肥,同时明确肥料生产技术是制约我国长江中下游地区西瓜生产低碳减排的关键因素之一。
Abstract:In recent years, the planting mode of intercropping watermelon in orchards in the middle and lower reaches of the Yangtze River in China has garnered significant attention. In order to investigate the carbon emission of interplanting watermelon in orchards under different fertilization modes, the study was conducted in a young citrus orchard located at Yitang Town, Hunan Province, three treatments were considered: no fertilizer (CK), chemical fertilizer (NPK), and chemical fertilizer combined with manure (NPKM). It analyzed the difference in the yields and net benefits of intercropping watermelon in the young orchard under the three fertilization regimes. The life cycle assessment (LCA) was performed to evaluate the carbon footprint of the watermelon production system, and to identify the agricultural factors with the highest contribution to carbon emissions under different fertilization regimes. The results showed that compared with CK, the application of the fertilizer significantly increased watermelon yield and greenhouse gas (GHG) emissions, and the net benefit of NPK and NPKM increased by 176.9% and 185.2%, respectively. The total carbon emissions were 1 897.19, 20 682.54 and 19 889.19 kg/hm2 (CO2-eq) for CK, NPK and NPKM, respectively. The production stage of agricultural inputs (e.g. fertilizers) was the main contributor to GHG emissions in the life cycle of watermelon, starting from raw materials to final products. Compared with NPK, the carbon footprint per unit area, per unit yield, and per unit net benefit under NPKM reduced by 30.4%, 28.8% and 32.4%, respectively. The contribution analysis showed that fertilizer production was the primary factor contributing to the carbon footprint of NPK (78.2%) and NPKM (42.9%). In conclusion, considering the carbon footprint and economic benefit, NPKM was better than CK and NPK in intercropping watermelon in young orchards. Also, this study indicated that the fertilizer production technology was one of the key factors restricting the low-carbon emission reduction of watermelon production in the middle and lower reaches of the Yangtze River Basin in China.
-
表 1 西瓜生产农业资料投入清单
Table 1. List of agricultural input materials of watermelon production
类别 项目 处理 CK NPK NPKM 肥料/(kg/hm2) 化肥 0.00 2117.25 1125.00 有机肥 0.00 0.00 33750.00 农药/(kg/hm2) 除草剂 36.00 36.00 36.00 杀菌剂 9.00 9.00 9.00 杀虫剂 2.40 2.40 2.40 电力/(kW·h/hm2) 灌溉用电 1 050.00 1 050.00 1 050.00 农用机械/(L/hm2) 柴油 15.00 15.00 15.00 汽油 72.00 72.00 72.00 滴灌设备/ (m/hm2) 主管 312.50 312.50 312.50 支管 140.60 140.60 140.60 滴灌带 375.00 375.00 375.00 农膜 /(kg/hm2) 农用地膜 46.90 46.90 46.90 注:滴灌设备按使用寿命折算1年的用量。 表 2 西瓜生产过程中生产资料的温室气体排放系数
Table 2. Greenhouse gas emission coefficients of agricultural materials in watermelon production
表 3 不同施肥模式下西瓜生产过程中要素投入与产出
Table 3. Input and output in watermelon production of different fertilization regimes
处理 西瓜产量/
(kg/hm2)农资投入费用/(元/hm2) 田间管理费用/
(元/hm2)经济产出/(元/hm2) 肥料 地膜 秧苗1) 农药 滴灌2) 产值3) 净收益 CK 14065.50 0.00 600.00 3750.00 1650.00 2700.00 300.00 16878.60 7878.60 NPK 29574.75 10586.25 600.00 3750.00 1650.00 2700 .00300.00 41404.65 21818.40 NPKM 28906.50 9000.00 600.00 3750.00 1650.00 2700.00 300.00 40469.10 22469.10 1) 秧苗2元/株,补苗率按5%计;2) 滴灌设备按使用寿命5年折算1年的费用;3) CK西瓜个头小,收购价为1.20元/kg,NPK和NPKM西瓜收购价为1.40元/kg。 表 4 3种施肥模式的碳足迹
Table 4. Carbon footprint of three fertilization regimes
处理 CFA/(kg/hm2) CFY/(kg/kg) CFV/(kg/元) CK −632.81 −0.04 −0.08 NPK 18 152.54 0.61 0.83 NPKM 12 631.94 0.44 0.56 -
[1] 生态环境部. 中华人民共和国气候变化第三次两年更新报告[A/OL]. [2023-12-29]. https://www.mee.gov.cn/ywdt/hjywnews/202312/t20231229_1060290.shtml. [2] 林舒晗, 郑晶. 福建省农业生产碳排放的区域差异分析[J]. 长春理工大学学报(社会科学版),2016,29(6):81-86. [3] 彭宸, 贾俊松, 余清项, 等. 中国农业碳排放的时空演化及影响因素分析[J]. 环境科学研究,2024,37(6):1181-1192.PENG C, JIA J S, YU Q X, et al. Analysis of spatio-temporal evolution and influencing factors of agricultural carbon emission in China[J]. Research of Environmental Sciences,2024,37(6):1181-1192. [4] 刘凤之, 王海波, 胡成志. 我国主要果树产业现状及 “十四五” 发展对策[J]. 中国果树,2021(1):1-5.LIU F Z, WANG H B, HU C Z. Current situation of main fruit tree industry in China and it's development countermeasure during the "14th Five-year Plan" Period[J]. China Fruits,2021(1):1-5. [5] 黄晶, 高菊生, 刘淑军, 等. 湘南红壤坡地幼龄桔园套种不同作物的生态环境效应[J]. 湖南农业科学,2011(19):108-111. doi: 10.3969/j.issn.1006-060X.2011.19.034HUANG J, GAO J S, LIU S J, et al. Eco-environmental effects of interplanting different crops in young citrus orchard on slope land of red soils in South Hunan[J]. Hunan Agricultural Sciences,2011(19):108-111. doi: 10.3969/j.issn.1006-060X.2011.19.034 [6] 蒋惠, 郭雁君, 郭丽英, 等. 幼龄柑橘园间套种马铃薯研究进展[J]. 现代农业科技,2020(4):48-50. doi: 10.3969/j.issn.1007-5739.2020.04.028 [7] LU X L, LU X N. Tillage and crop residue effects on the energy consumption, input–output costs and greenhouse gas emissions of maize crops[J]. Nutrient Cycling in Agroecosystems,2017,108(3):323-337. doi: 10.1007/s10705-017-9859-5 [8] IQBAL S, XU J C, KHAN S, et al. Regenerative fertilization strategies for climate-smart agriculture: consequences for greenhouse gas emissions from global drylands[J]. Journal of Cleaner Production,2023,398:136650. doi: 10.1016/j.jclepro.2023.136650 [9] 许修柱. 琯溪蜜柚生产中的碳排放及优化施肥的综合效应评价[D]. 福州: 福建农林大学, 2019. [10] 谢红梅. 永州市柑橘幼林间种模式研究[D]. 长沙: 中南林业科技大学, 2013. [11] 沈兆敏, 李银国. 我国红黄壤地区果树生产现状及持续发展的技术对策[J]. 中国南方果树,1998(4):52-53. [12] 徐洋, 辛景树. 经济作物科学施肥发展现状与对策建议[J]. 中国农技推广,2017,33(5):9-13. doi: 10.3969/j.issn.1002-381X.2017.05.003 [13] BOLDRIN A, HARTLING K R, LAUGEN M, et al. Environmental inventory modelling of the use of compost and peat in growth media preparation[J]. Resources, Conservation and Recycling,2010,54(12):1250-1260. doi: 10.1016/j.resconrec.2010.04.003 [14] WANG C, MA X F, SHEN J L, et al. Reduction in net greenhouse gas emissions through a combination of pig manure and reduced inorganic fertilizer application in a double-rice cropping system: three-year results[J]. Agriculture, Ecosystems & Environment, 2022, 326: 107799. [15] WU T Y, SCHOENAU J J, LI F M, et al. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China[J]. Soil and Tillage Research,2004,77(1):59-68. doi: 10.1016/j.still.2003.10.002 [16] 丁旻, 龚静阳, 徐名汉, 等. 猪粪好氧堆肥碳排放分析[J]. 农业工程,2023,13(9):61-65. [17] 方恺. 足迹家族: 概念、类型、理论框架与整合模式[J]. 生态学报,2015,35(6):1647-1659.FANG K. Footprint family: concept, classification, theoretical framework and integrated pattern[J]. Acta Ecologica Sinica,2015,35(6):1647-1659. [18] 罗自威, 陶晶霞, 侯凯捷, 等. 养分优化管理实现蜜柚高产高效和降低碳排放[J]. 植物营养与肥料学报,2022,28(4):688-700.LUO Z W, TAO J X, HOU K J, et al. Optimized nutrient management improves fruit yield and fertilizer use efficiency and reduces carbon emissions in pomelo production[J]. Journal of Plant Nutrition and Fertilizers,2022,28(4):688-700. [19] 李羽佳. 中国典型区域西瓜施肥现状及氮肥优化研究[D]. 重庆: 西南大学, 2019. [20] 陈晓辉. 中国种植业结构演变及其资源环境代价研究[D]. 北京: 中国农业大学, 2018. [21] YANG X L, GAO W S, ZHANG M, et al. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain[J]. Journal of Cleaner Production,2014,76:131-139. doi: 10.1016/j.jclepro.2014.03.063 [22] YAN M, CHENG K, YUE Q, et al. Farm and product carbon footprints of China's fruit production: life cycle inventory of representative orchards of five major fruits[J]. Environmental Science and Pollution Research,2016,23(5):4681-4691. doi: 10.1007/s11356-015-5670-5 [23] SOLOMON S, QIN D, MANNING M, et al. Climate change 2007: the physical science basis. contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007.SOLOMON S, QIN D, MANNING M, et al. Climate change 2007: the physical science basis. contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007. [24] LIANG L, RIDOUTT B G, WANG L Y, et al. China’s tea industry: net greenhouse gas emissions and mitigation potential[J]. Agriculture,2021,11(4):363. doi: 10.3390/agriculture11040363 [25] 徐强. 浙江省绿茶生产的环境影响与减排潜力研究[D]. 北京: 中国农业大学, 2020. [26] 梁龙. 基于LCA的循环农业环境影响评价方法探讨与实证研究[D]. 北京: 中国农业大学, 2009. [27] 钟佳. 污泥/猪粪堆肥及其农田利用全过程的温室气体与氨气排放特征研究[D]. 北京: 中国科学院大学, 2013. [28] 李泽. 渭北旱塬苹果园土壤呼吸的时空变异特征及其影响因子[D]. 杨凌: 西北农林科技大学, 2012. [29] WANG Y D, HU N, XU M G, et al. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system[J]. Biology and Fertility of Soils,2015,51(5):583-591. doi: 10.1007/s00374-015-1007-2 [30] ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8375-8380. [31] ZHONG J, WEI Y S, WAN H F, et al. Greenhouse gas emission from the total process of swine manure composting and land application of compost[J]. Atmospheric Environment,2013,81:348-355. doi: 10.1016/j.atmosenv.2013.08.048 [32] 宁礼哲, 任家琪, 张哲, 等. 2020年中国区域及省级电网电力碳足迹研究[J]. 环境工程,2023,41(3):229-236.NING L Z, REN J Q, ZHANG Z, et al. Carbon footprint of China's regional and provincial power grids in 2020[J]. Environmental Engineering,2023,41(3):229-236. [33] 李建政. 农田生态系统温室气体减排技术评价及实证分析[D]. 北京: 中国农业科学院, 2015. [34] 刘巽浩, 徐文修, 李增嘉, 等. 农田生态系统碳足迹法: 误区、改进与应用. 兼析中国集约农作碳效率[J]. 中国农业资源与区划,2013,34(6):1-11. [35] 陈红, 郝维昌, 石凤, 等. 几种典型高分子材料的生命周期评价[J]. 环境科学学报,2004,24(3):545-549. doi: 10.3321/j.issn:0253-2468.2004.03.031CHEN H, HAO W C, SHI F, et al. Life cycle assessment of several typical macromolecular materials[J]. Acta Scientiae Circumstantiae,2004,24(3):545-549. doi: 10.3321/j.issn:0253-2468.2004.03.031 [36] 张国, 逯非, 黄志刚, 等. 我国主粮作物的化学农药用量及其温室气体排放估算[J]. 应用生态学报,2016,27(9):2875-2883.ZHANG G, LU F, HUANG Z G, et al. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China[J]. Chinese Journal of Applied Ecology,2016,27(9):2875-2883. [37] 陈中督, 徐春春, 纪龙, 等. 2004—2014年南方稻区双季稻生产碳足迹动态及其构成[J]. 应用生态学报,2018,29(11):3669-3676.CHEN Z D, XU C C, JI L, et al. Dynamic of carbon footprint and its composition for double rice production in Southern China during 2004-2014[J]. Chinese Journal of Applied Ecology,2018,29(11):3669-3676. [38] KHOSHNEVISAN B, BOLANDNAZAR E, SHAMSHIRBAND S, et al. Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm[J]. Journal of Cleaner Production,2015,86:67-77. doi: 10.1016/j.jclepro.2014.08.062 [39] 刘宇峰, 原志华, 郭玲霞, 等. 中国农作物生产碳足迹及其空间分布特征[J]. 应用生态学报,2017,28(8):2577-2587.LIU Y F, YUAN Z H, GUO L X, et al. Carbon footprint of crop production in China from 1993 to 2013 and its spatial distribution[J]. Chinese Journal of Applied Ecology,2017,28(8):2577-2587. [40] 王占彪, 王猛, 陈阜. 华北平原作物生产碳足迹分析[J]. 中国农业科学,2015,48(1):83-92.WANG Z B, WANG M, CHEN F. Carbon footprint analysis of crop production in North China Plain[J]. Scientia Agricultura Sinica,2015,48(1):83-92. [41] 于亚泽, 焦燕, 杨文柱, 等. 不同灌溉方式旱田土壤N2O排放和氮素淋溶特征[J]. 中国环境科学,2021,41(2):813-825. doi: 10.3969/j.issn.1000-6923.2021.02.036YU Y Z, JIAO Y, YANG W Z, et al. Characteristics of N2O emissions and nitrogen leaching from upland soils under drip or furrow irrigation[J]. China Environmental Science,2021,41(2):813-825. doi: 10.3969/j.issn.1000-6923.2021.02.036 [42] ZHENG J, ZHOU M H, ZHU B, et al. Drip fertigation sustains crop productivity while mitigating reactive nitrogen losses in Chinese agricultural systems: evidence from a meta-analysis[J]. Science of the Total Environment,2023,886:163804. doi: 10.1016/j.scitotenv.2023.163804 [43] 黄晓敏, 陈长青, 陈铭洲, 等. 2004—2013年东北三省主要粮食作物生产碳足迹[J]. 应用生态学报,2016,27(10):3307-3315.HUANG X M, CHEN C Q, CHEN M Z, et al. Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004-2013[J]. Chinese Journal of Applied Ecology,2016,27(10):3307-3315. [44] 刘阳, 靳晨生, 张海亚, 等. 秸秆生物炭的固碳减排潜力及其环境影响[J]. 中国环境科学,2024,44(1):396-403.LIU Y, JIN C S, ZHANG H Y, et al. Carbon sequestration and emission reduction potential of straw biochar and its environmental impacts[J]. China Environmental Science,2024,44(1):396-403. [45] 朱志成, 钟民正, 侯磊, 等. 整县推进畜禽粪污资源化利用项目温室气体减排量评估方法[J]. 环境工程技术学报,2024,14(1):25-32. doi: 10.12153/j.issn.1674-991X.20230486ZHU Z C,ZHONG M Z,HOU L,et al. Evaluation on greenhouse gas emission reduction of the whole county’s promotion project of livestock and poultry manure resource utilization[J]. Journal of Environmental Engineering Technology,2024,14(1):25-32. ◇ doi: 10.12153/j.issn.1674-991X.20230486