Stage characteristics, spatial differences and dynamic evolution of crop carbon sink in Hubei Province based on the crop data from 1997 to 2022
-
摘要:
湖北省是我国农业大省,科学测算湖北省农作物碳汇,摸清本底,对碳汇交易和农业低碳发展具有重要意义。对湖北省1997—2022年的农作物碳汇量进行测算,运用Dagum基尼系数、Kernel密度估计和Markov链,探讨湖北省农作物碳汇量的地区差异和动态演进特征。结果表明:1997—2022年,湖北省农作物碳汇量呈现“W”形波动上升的态势,平均值为12 085.30万t,其中粮食作物为湖北省农作物碳汇的主要贡献来源。“双碳”背景下对湖北省的三大地区及各市(州、林区)展开分析,发现1997—2022年鄂东地区农作物碳汇量位于湖北省三大地区的第一位。Dagum基尼系数分析显示湖北省农作物碳汇存在一定的地区差异,其差异主要来自于超变密度,平均贡献率为53.58%,湖北省农作物碳汇总量具有较强的稳定性,具有一定的俱乐部趋同特征。最后提出相关对策建议,如开发农作物碳汇核算方法学和标准,制定差异化的农业碳汇增汇政策,探索农业碳汇交易机制及价值实现。
Abstract:Hubei Province is a major agricultural province in China. The scientific measurement of the carbon sink of crops in Hubei Province, which clarifies the baseline, is of significant importance for carbon sink trading and the development of low-carbon agriculture. The study measured the carbon sink of crops in Hubei Province from 1997 to 2022, employing the Dagum Gini coefficient, Kernel density estimation, and Markov chains, to explore the regional differences and dynamic evolution characteristics of the crop carbon sink in Hubei Province. The results indicated that from 1997 to 2022, the crop carbon sink in Hubei Province exhibited a fluctuating upward trend, presenting a "W" shaped distribution with an average value of 120.853 million tons, with grain crops being the primary contributor to the crop carbon sink. Under the "dual carbon" context, an analysis of three major regions and cities (prefectures) in Hubei Province revealed that from 1997 to 2022, the eastern region of Hubei Province ranked first among the three major regions in terms of crop carbon sink. The Dagum Gini coefficient analysis showed certain regional differences in the crop carbon sink in Hubei Province, mainly coming from ultra-variable density, with an average contribution rate of 53.58%. The total crop carbon sink in Hubei Province exhibited strong stability and demonstrated certain characteristics of club convergence. Finally, this paper proposed the development of methodologies and standards for crop carbon sink accounting, the formulation of differentiated policies for increasing agricultural carbon sink, and suggestions for exploring countermeasures for carbon sink trading.
-
Key words:
- crops /
- carbon sink /
- Dagum Gini coefficient /
- Kernel density /
- Markov chain /
- Hubei Province
-
表 1 湖北省主要农作物碳吸收率、含水率及经济系数
Table 1. Carbon absorption rate, moisture content and economic coefficient of main crops in Hubei Province
表 2 1997—2022年湖北省农作物碳汇的地区差异
Table 2. Regional differences in crop carbon sink in Hubei Province from 1997 to 2022
年份 总体 地区内差异 地区间净差异 地区间超变密度 贡献率/% 地区内差异 地区间差异 地区间超变密度 1997 0.406 3 0.130 0 0.049 4 0.227 0 31.986 12.154 55.860 1998 0.408 4 0.129 1 0.048 4 0.230 9 31.605 11.840 56.555 1999 0.412 1 0.132 9 0.047 5 0.231 7 32.243 11.529 56.228 2000 0.395 6 0.125 1 0.053 5 0.216 9 31.635 13.536 54.829 2001 0.404 6 0.127 0 0.064 6 0.213 0 31.390 15.961 52.649 2002 0.406 6 0.129 9 0.037 7 0.239 0 31.942 9.280 58.778 2003 0.403 7 0.128 8 0.053 3 0.221 6 31.904 13.196 54.900 2004 0.407 9 0.130 1 0.055 4 0.222 4 31.887 13.576 54.537 2005 0.404 0 0.129 4 0.053 5 0.221 1 32.025 13.245 54.730 2006 0.400 2 0.127 8 0.049 0 0.223 3 31.946 12.241 55.813 2007 0.409 1 0.130 2 0.055 2 0.223 7 31.815 13.495 54.689 2008 0.407 5 0.129 7 0.052 5 0.225 2 31.844 12.894 55.262 2009 0.406 5 0.129 2 0.055 1 0.222 2 31.786 13.558 54.656 2010 0.407 7 0.129 2 0.057 9 0.220 7 31.687 14.194 54.120 2011 0.404 5 0.127 8 0.064 1 0.212 6 31.584 15.857 52.559 2012 0.406 2 0.128 5 0.062 2 0.215 5 31.624 15.310 53.066 2013 0.410 1 0.129 9 0.071 0 0.209 3 31.681 17.299 51.020 2014 0.411 3 0.130 0 0.070 5 0.210 8 31.612 17.145 51.243 2015 0.410 6 0.129 9 0.069 5 0.211 2 31.629 16.931 51.440 2016 0.421 5 0.132 4 0.062 9 0.226 2 31.414 14.923 53.664 2017 0.423 1 0.131 9 0.079 0 0.212 2 31.183 18.667 50.151 2018 0.423 1 0.132 9 0.072 6 0.217 6 31.407 17.156 51.438 2019 0.425 0 0.133 1 0.076 6 0.215 4 31.316 18.016 50.668 2020 0.428 2 0.134 4 0.072 6 0.221 1 31.389 16.967 51.644 2021 0.427 6 0.134 4 0.074 5 0.218 7 31.438 17.421 51.141 2022 0.428 3 0.135 0 0.073 1 0.220 2 31.515 17.077 51.408 平均值 0.411 5 0.130 3 0.060 8 0.220 4 31.672 14.749 53.579 表 3 湖北省农作物碳汇的Markov转移概率矩阵
Table 3. Markov transfer probability matrix of crop carbon sink in Hubei Province
t/(t+1) Ⅰ Ⅱ Ⅲ Ⅳ Ⅰ 0.944 0.056 0 0 Ⅱ 0.057 0.896 0.047 0 Ⅲ 0 0.037 0.925 0.037 Ⅳ 0 0 0.038 0.962 -
[1] 胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策,2020,36(5):56-62.HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision,2020,36(5):56-62. [2] 李艳苓, 朱昌雄, 李红娜, 等. 基于层次分析法的农业面源污染防治技术评价[J]. 环境工程技术学报,2019,9(4):355-361.LI Y L, ZHU C X, LI H N, et al. Evaluation of agricultural non-point source pollution control technologies based on analytic hierarchy process[J]. Journal of Environmental Engineering Technology,2019,9(4):355-361. [3] 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报,2008,24(10):269-273. doi: 10.3321/j.issn:1002-6819.2008.10.055DONG H M, LI Y E, TAO X P, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(10):269-273. doi: 10.3321/j.issn:1002-6819.2008.10.055 [4] 胡婉玲, 张金鑫, 王红玲. 中国种植业碳排放时空分异研究[J]. 统计与决策,2020,36(15):92-95.HU W L, ZHANG J X, WANG H L. Research on the spatiotemporal differentiation of carbon emissions in China's planting industry[J]. Statistics & Decision,2020,36(15):92-85. [5] LAL R, BRUCE J P. The potential of world cropland soils to sequester C and mitigate the greenhouse effect[J]. Environmental Science & Policy,1999,2(2):177-185. [6] 陈罗烨, 薛领, 雪燕. 中国农业净碳汇时空演化特征分析[J]. 自然资源学报,2016,31(4):596-607.CHEN L Y, XUE L, XUE Y. Spatial-temporal characteristics of China's agricultural net carbon sink[J]. Journal of Natural Resources,2016,31(4):596-607. [7] 尚杰, 杨滨键. 区域农业碳足迹动态影响效应研究: 以潍坊市种植业为例[J]. 农村经济,2020(5):75-82. [8] 丁宝根, 杨树旺, 赵玉. 长江经济带种植业碳排放时空特征及驱动因素研究[J]. 生态与农村环境学报,2019,35(10):1252-1258.DING B G, YANG S W, ZHAO Y. Study on spatial-temporal characteristics and driving factors of carbon emission from planting industry in the Yangtze River Economic Belt[J]. Journal of Ecology and Rural Environment,2019,35(10):1252-1258. [9] 陈红, 王浩坤, 秦帅. 农业碳排放的脱钩效应及驱动因素分析: 以黑龙江省为例[J]. 科技管理研究,2019,39(17):247-252.CHEN H, WANG H K, QIN S. Analysis of decoupling effect and driving factors of agricultural carbon emission: a case study of Heilongjiang Province[J]. Science and Technology Management Research,2019,39(17):247-252. [10] 翟国庆, 韩明钊, 李永江, 等. 黑土坡耕地有机碳变化及固碳潜力分析[J]. 生态学报,2020,40(16):5751-5760.ZHAI G Q, HAN M Z, LI Y J, et al. Organic carbon change and carbon sequestration potential of sloping farmland in the black soil area[J]. Acta Ecologica Sinica,2020,40(16):5751-5760. [11] 韩冰, 王效科, 逯非, 等. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报,2008,28(2):612-619.HAN B, WANG X K, LU F, et al. Soil carbon sequestration and its potential by cropland ecosystems in China[J]. Acta Ecologica Sinica,2008,28(2):612-619. [12] 董婧, 孙长虹, 王永刚, 等. 北京市典型农业区域大气环境氨浓度动态变化分析[J]. 环境工程技术学报,2017,7(3):262-267.DONG J, SUN C H, WANG Y G, et al. Dynamics of atmospheric ammonia concentrations over representative agricultural region in Beijing[J]. Journal of Environmental Engineering Technology,2017,7(3):262-267. [13] 谢高地, 李士美, 肖玉, 等. 碳汇价值的形成和评价[J]. 自然资源学报,2011,26(1):1-10. doi: 10.11849/zrzyxb.2011.01.001XIE G D, LI S M, XIAO Y, et al. Value of carbon sink: concept and evaluation[J]. Journal of Natural Resources,2011,26(1):1-10. doi: 10.11849/zrzyxb.2011.01.001 [14] 朱燕茹, 王梁. 农田生态系统碳源/碳汇综述[J]. 天津农业科学,2019,25(3):27-32.ZHU Y R, WANG L. A review of carbon source and carbon sink in farmland ecosystem[J]. Tianjin Agricultural Sciences,2019,25(3):27-32. [15] 祁巍锋, 唐彩飞. 工业型村庄碳排放影响因素研究: 以杭州市萧山区凤凰村例[J]. 建筑与文化,2016(4):155-157.QI W F, TANG C F. Study on the influencing factors of carbon emission in industrial villages:a case study of Fenghuang Village, Xiaoshan City, Hangzhou[J]. Architecture & Culture,2016(4):155-157. [16] GOGLIO P, SMITH W N, GRANT B B, et al. A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA[J]. Journal of Cleaner Production,2018,172:4010-4017. doi: 10.1016/j.jclepro.2017.03.133 [17] 尚杰, 杨滨键. 种植业碳源、碳汇测算与净碳汇影响因素动态分析: 山东例证[J]. 改革,2019(6):123-134.SHANG J, YANG B J. Estimation of carbon source and carbon sequestration in planting industry and dynamic analysis of influencing factors of net carbon sequestration: a case study of Shandong Province[J]. Reform,2019(6):123-134. [18] 李波, 张俊飚. 我国农作物碳汇的阶段特征与空间差异研究[J]. 湖北农业科学,2013,52(5):1229-1233.LI B, ZHANG J B. Study on phase characteristics and spatial differences of Chinese agricultural carbon sinks[J]. Hubei Agricultural Sciences,2013,52(5):1229-1233. [19] 李波, 王春妤, 张俊飚. 中国农业净碳汇效率动态演进与空间溢出效应[J]. 中国人口·资源与环境,2019,29(12):68-76.LI B, WANG C Y, ZHANG J B. Dynamic evolution and spatial spillover of China’s agricultural net carbon sink[J]. China Population, Resources and Environment,2019,29(12):68-76. [20] 张精, 方堉, 魏锦达, 等. 基于碳足迹的安徽省农田生态系统碳源/汇时空差异[J]. 福建农业学报,2021,36(1):78-90.ZHANG J, FANG Y, WEI J D, et al. Carbon footprint-based temporal and spatial analysis on carbon sources/sinks at farmlands in Anhui Province[J]. Fujian Journal of Agricultural Sciences,2021,36(1):78-90. [21] 李克让. 土地利用变化和温室气体净排放与陆地生态系统碳循环[M]. 北京: 气象出版社, 2002: 310. [22] 伍国勇, 刘金丹, 杨丽莎. 中国农业碳排放强度动态演进及碳补偿潜力[J]. 中国人口·资源与环境,2021,31(10):69-78. doi: 10.12062/cpre.20210606WU G Y, LIU J D, YANG L S. Dynamic evolution of China's agricultural carbon emission intensity and carbon offset potential[J]. China Population, Resources and Environment,2021,31(10):69-78. doi: 10.12062/cpre.20210606 [23] 国家发展和改革委员会. 省级温室气体清单编制指南(试行)[S]. 北京: 国家发展和改革委员会, 2011. [24] 张金鑫, 胡婉玲, 王红玲. 湖北省农业碳排放的时序特征与影响因素分析[J]. 湖北农业科学,2020,59(24):67-74.ZHANG J X, HU W L, WANG H L. Analysis of the timing characteristics and influencing factors of agricultural carbon emissions in Hubei Province[J]. Hubei Agricultural Sciences,2020,59(24):67-74. [25] 王诗雨, 刘学伟, 崔鸿鹏, 等. 农田生态系统碳源/汇时空演变因素分析: 以黑龙江省为例[J]. 中国国土资源经济: 2024, 37(5): 4-13.WANG S Y, LIU X W, CUI H P, et al. Analysis of temporal and spatial evolution factors of carbon source/sink in farmland ecosystem: a case study of Heilongjiang Province[J]. Natural Resource Economics of China, 2024, 37(5): 4-13. [26] 王宝英, 齐爱云, 王子莎. 黄河流域与长江经济带种植业碳足迹供需平衡对比研究[J]. 湖北农业科学,2022,61(3):53-59.WANG B Y, QI A Y, WANG Z S. A comparative study on the supply and demand balance of the planting industry carbon footprint between the Yellow River Basin and the Yangtze River Economic Belt[J]. Hubei Agricultural Sciences,2022,61(3):53-59. [27] 王梁, 赵杰, 陈守越. 山东省农田生态系统碳源、碳汇及其碳足迹变化分析[J]. 中国农业大学学报,2016,21(7):133-141. doi: 10.11841/j.issn.1007-4333.2016.07.17WANG L, ZHAO J, CHEN S Y. Analysis of ecosystem carbon sources/sinks and carbon footprint in farmland ecosystem of Shandong Province[J]. Journal of China Agricultural University,2016,21(7):133-141. doi: 10.11841/j.issn.1007-4333.2016.07.17 [28] RONG T Q, ZHANG P Y, ZHU H R, et al. Spatial correlation evolution and prediction scenario of land use carbon emissions in China[J]. Ecological Informatics,2022,71:101802. doi: 10.1016/j.ecoinf.2022.101802 [29] 徐玥, 王辉, 韩秋凤. 中国农业净碳效应与农业经济发展的时空耦合规律研究[J]. 新疆农垦经济,2023(7):1-12. doi: 10.3969/j.issn.1000-7652.2023.07.002XU Y, WANG H, HAN Q F. A study of the spatial-temporal coupling patterns between the net carbon effect of agriculture and agricultural economic development in China[J]. Xinjiang State Farms Economy,2023(7):1-12. doi: 10.3969/j.issn.1000-7652.2023.07.002 [30] MAI Q S, BAI M T, LI L. Study on the dynamic evolution and regional differences of the level of high-quality economic and social development in China[J]. Sustainability,2022,15(1):382. doi: 10.3390/su15010382 [31] CHEN P H, RAO M Y, VASA L, et al. Spatial effects and heterogeneity analysis of the impact of environmental taxes on carbon emissions in China[J]. Heliyon,2023,9(11):e21393. doi: 10.1016/j.heliyon.2023.e21393 [32] LV C C, BIAN B C, LEE C C, et al. Regional gap and the trend of green finance development in China[J]. Energy Economics,2021,102:105476. doi: 10.1016/j.eneco.2021.105476 [33] 张卓群, 张涛, 冯冬发. 中国碳排放强度的区域差异、动态演进及收敛性研究[J]. 数量经济技术经济研究,2022,39(4):67-87.ZHANG Z Q, ZHANG T, FENG D F. Study on regional differences, dynamic evolution and convergence of carbon emission intensity in China[J]. The Journal of Quantitative & Technical Economics,2022,39(4):67-87. [34] 陈景华, 陈姚, 陈敏敏. 中国经济高质量发展水平、区域差异及分布动态演进[J]. 数量经济技术经济研究,2020,37(12):108-126.CHEN J H, CHEN Y, CHEN M M. China's high-quality economic development level, regional differences and dynamic evolution of distribution[J]. The Journal of Quantitative & Technical Economics,2020,37(12):108-126. [35] LI Z F, CAI Y L, HU S L. Research on systemic financial risk measurement based on HMM and text mining: a case of China financial market[J]. IEEE Access,2021,9:22171-22185. doi: 10.1109/ACCESS.2021.3055967 [36] 刘巽浩, 徐文修, 李增嘉, 等. 农田生态系统碳足迹法: 误区、改进与应用: 兼析中国集约农作碳效率(续)[J]. 中国农业资源与区划,2014,35(1):1-7. doi: 10.7621/cjarrp.1005-9121.20140101LIU X H, XU W X, LI Z J, et al. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China’s intensive farming[J]. Chinese Journal of Agricultural Resources and Regional Planning,2014,35(1):1-7. doi: 10.7621/cjarrp.1005-9121.20140101 [37] 谢婷, 张慧, 苗洁, 等. 湖北省农田生态系统温室气体排放特征与源/汇分析[J]. 农业资源与环境学报,2021,38(5):839-848.XIE T, ZHANG H, MIAO J, et al. Greenhouse gas emission characteristics and source/sink analysis of farmland ecosystem in Hubei Province[J]. Journal of Agricultural Resources and Environment,2021,38(5):839-848. ⊕