Effects of humic acid-containing water-soluble fertilizers on the growth of water spinach and soil nutrient properties
-
摘要:
为研究不同含腐植酸水溶肥施用量及施肥方式对空心菜品质、土壤含碳量、养分含量、土壤酶活性的影响,设置8个处理,分别为空白(CK)、常规化肥(CF)、根施腐植酸水溶肥全量替代(RT1)、根施腐植酸水溶肥50%替代(RT0.5)、根施腐植酸水溶肥25%替代(RT0.25)、叶施腐植酸水溶肥全量替代(LT1)、叶施腐植酸水溶肥50%替代(LT0.5)、叶施腐植酸水溶肥25%替代(LT0.25),测定收获后土壤理化性质以及空心菜产量品质指标,采用主成分分析法对施肥效果进行综合评价。结果表明,RT1较CF产量、土壤有机碳(SOC)含量和可溶性固形物含量分别提升了11.5%、8.7%和8.8%;LT1较CF可溶性固形物、粗蛋白和维生素C含量分别提升了17.6%、15.5%和11.0%,但产量和土壤SOC含量分别下降了2.9%和11.3%。空心菜产量与土壤速效氮和SOC含量呈显著正相关(P<0.05),与pH和速效钾、速效磷含量呈显著负相关(P<0.05),表明速效氮养分和有机质的添加对于促进空心菜的生长和增加产量起重要作用。根据主成分分析结果,施加含腐植酸水溶肥有利于高品质蔬菜生产及提高土壤质量,根部施用全量含腐植酸水溶肥替代化肥(RT1)效果最佳。研究结果可为提高作物产量品质和土壤质量,实现化肥减施并增加土壤固碳能力提供参考。
Abstract:In order to investigate the effects of different application rates and methods of humic acid-containing water-soluble fertilizers on the water spinach quality, nutrient contents, soil carbon contents, and soil enzyme activities, eight treatments were established. These treatments included: control group (CK), conventional fertilization (CF), root-applied humic acid water-soluble fertilizer with full substitution (RT1), root-applied humic acid water-soluble fertilizer with 50% substitution (RT0.5), root-applied humic acid water-soluble fertilizer with 25% substitution (RT0.25), leaf application of humic acid water-soluble fertilizer with full substitution (LT1), leaf application with 50% substitution (LT0.5), and leaf application with 25% substitution (LT0.25). The physical and chemical properties of the soil after harvest were determined, alongside the quality indices of water spinach yield, and the impact of fertilization methods was comprehensively evaluated using principal component analysis. The results indicated that RT1 enhanced yield, soil organic carbon (SOC) content, and soluble solids content by 11.5%, 8.7%, and 8.8%, respectively, compared to CF. On the other hand, LT1 improved soluble solids, crude protein, and vitamin C content by 17.6%, 15.5%, and 11.0%, respectively, relative to CF, although yield and SOC content decreased by 2.9% and 11.3%, respectively. Significant positive correlations (P<0.05) were found between water spinach yield and quick-acting nitrogen (AN) content as well as SOC, while significant negative correlations (P<0.05) were observed with pH, quick-acting potassium (AK), and quick-acting phosphorus (AP) content. These findings suggested that quick-acting nitrogen nutrients and organic matter played pivotal roles in enhancing the growth and yield of water spinach. Principal component analysis underscored that applying humic acid-containing water-soluble fertilizers was beneficial for producing high-quality vegetables and improving soil quality. Specifically, applying the full amount of humic acid-containing water-soluble fertilizers at the root level (RT1) yielded the most favorable outcomes compared to conventional chemical fertilizers (CF). Overall, this study provides valuable insights into enhancing crop yield quality, improving soil health, reducing chemical fertilizer dependency, and boosting soil carbon sequestration capacity.
-
表 1 试验设计
Table 1. Experimental design
处理 施用方式 追肥施用量 CK 空白处理 不追肥 CF 常规施肥 尿素3.3 RT1 根施腐植酸水溶肥全量替代 水溶肥11.7 RT0.5 根施腐植酸水溶肥50%替代 水溶肥5.9+尿素1.65 RT0.25 根施腐植酸水溶肥25%替代 水溶肥2.94+尿素2.43 LT1 叶施腐植酸水溶肥全量替代 水溶肥11.7 LT0.5 叶施腐植酸水溶肥50%替代 水溶肥5.9+尿素1.65 LT0.25 叶施腐植酸水溶肥25%替代 水溶肥2.94+尿素2.43 注:尿素施用量单位为g/m2,水溶肥施用量单位为mL/m2。 表 2 空心菜品质结果统计
Table 2. Statistics of water spinach quality result
处理 可溶性固形物
含量/%粗蛋白
含量/(g/kg)维生素C
含量/(mg/kg)叶绿素
总量/(mg/g)CK 2.37±0.06ab 2.15±0.03b 1.67±0.04e 0.58±0.01bc CF 2.27±0.21bc 1.93±0.06c 1.79±0.04c 0.57±0.01c RT1 2.47±0.06ab 2.21±0.08ab 1.89±0.04b 0.58±0.02bc RT0.5 1.97±0.15cd 2.03±0.15bc 1.78±0.04cd 0.58±0.01bc RT0.25 2.00±0.26cd 2.19±0.42ab 1.70±0.07de 0.56±0.06bc LT1 2.67±0.15a 2.23±0.47ab 1.99±0.03a 0.62±0.02ab LT0.5 1.70±0.10d 2.37±0.22a 1.77±0.04cd 0.63±0.01a LT0.25 2.03±0.21c 2.12±0.11bc 1.74±0.03cde 0.58±0.01bc 注:表中的数据格式为平均值±误差;不同小写字母表示差异显著(P<0.05)。 表 3 土壤理化性质特征
Table 3. Characterization of soil physical and chemical properties
处理 pH SOC含量/(g/kg) AN含量/(mg/kg) AP含量/(mg/kg) AK含量/(mg/kg) CK 8.15±0.02a 13.80±0.58ab 75.78±22.71e 77.12±6.60a 142.67±4.04a CF 8.03±0.02b 13.31±0.14b 94.51±12.67d 80.41±1.08a 131.33±0.58b RT1 7.87±0.02e 14.47±0.31a 107.23±8.29cd 78.69±5.42a 87.33±1.53d RT0.5 7.93±0.02d 13.06±0.27bc 122.84±9.80bc 53.73±5.60c 111.67±2.52c RT0.25 7.96±0.01c 12.26±0.71cd 113.69±2.44c 72.14±6.96ab 94.67±2.52d LT1 7.95±0.01cd 11.96±0.19d 135.05±3.49b 55.04±1.47c 88.00±7.55d LT0.5 8.01±0.02b 13.71±0.53ab 241.44±5.72a 65.42±1.57b 91.67±7.09d LT0.25 8.01±0.01b 10.70±0.67e 70.67±0.98e 67.06±3.04b 73.67±2.52e 注:同表2。 表 4 土壤酶活性结果统计
Table 4. Statistics of soil enzyme activity results
处理 脲酶活性/
〔μg/(g·d)〕蔗糖酶活性/
〔mg/(g·d)〕过氧化氢酶活性/
〔μmol/(g·d)〕CK 254.40±69.92a 56.42±9.36c 65.14±0.84a CF 301.63±5.78a 91.60±7.22b 66.48±1.46a RT1 262.18±35.15a 151.51±2.00a 66.09±2.64a RT0.5 299.40±34.76a 48.75±9.37c 62.83±1.28b RT0.25 286.93±57.02a 52.12±8.72c 62.24±0.48b LT1 274.51±13.76a 51.13±4.00c 64.29±0.15ab LT0.5 298.17±41.22a 95.17±10.50b 62.29±0.57b LT0.25 281.99±12.27a 98.49±18.15b 66.10±0.14a 注:同表2。 表 5 主成分得分系数矩阵
Table 5. Matrix of component score coefficients
空心菜品质
及土壤指标主成分 1 2 3 4 5 产量 0.117 0.210 0.086 0.258 −0.249 土壤pH −0.153 −0.108 0.117 0.069 0.454 土壤SOC含量 0.007 0.100 0.467 0.180 −0.078 土壤AN含量 0.153 −0.151 0.264 0.066 −0.017 土壤AP含量 −0.125 0.139 0.269 −0.254 0.062 土壤AK含量 −0.152 0.031 0.209 0.389 0.047 可溶性固形物含量 −0.001 0.222 −0.146 0.197 0.404 粗蛋白含量 0.130 −0.142 0.128 −0.218 0.325 维生素C含量 0.166 0.160 −0.133 0.164 0.167 叶绿素总量 0.163 −0.094 0.101 0.111 0.428 土壤脲酶活性 0.208 0.081 0.007 −0.037 −0.007 土壤蔗糖酶活性 0.059 0.188 0.210 −0.412 −0.020 土壤过氧化氢酶活性 −0.069 0.251 −0.059 −0.167 0.283 特征值 4.511 3.151 1.858 1.543 1.19 方差贡献率/% 34.7 24.2 14.3 11.9 9.1 累计方差贡献率/% 34.7 59.0 73.2 85.1 94.3 表 6 各处理主成分得分及综合排名
Table 6. Comprehensive ranking
处理 各主成分得分 综合排名 F1 F2 F3 F4 F5 F RT1 0.28 0.44 0.11 −0.11 −0.03 0.70 1 LT1 0.45 0.08 −0.18 0.14 0.12 0.62 2 LT0.5 0.43 −0.35 0.23 −0.04 0.02 0.29 3 CF −0.32 0.28 0.06 0.07 −0.03 0.04 4 RT0.5 0.08 −0.09 −0.06 0.16 −0.16 −0.08 5 CK −0.57 −0.07 0.10 0.07 0.12 −0.35 6 LT0.25 −0.11 −0.06 −0.20 −0.22 0.03 −0.56 7 RT0.25 −0.20 −0.24 −0.05 −0.05 −0.10 −0.65 8 -
[1] 纪梦梦, 吴晓刚, 吴欣欣, 等. 过量施肥对设施菜田土壤菌群结构及N2O产生的影响[J]. 微生物学通报,2018,45(6):1323-1332.JI M M, WU X G, WU X X, et al. Effect of overuse nitrogen fertilizer on bacterial community and N2O emission from greenhouse soil[J]. Microbiology China,2018,45(6):1323-1332. [2] 刘娇娴, 崔骏, 刘洪宝, 等. 土壤改良剂改良酸化土壤的研究进展[J]. 环境工程技术学报,2022,12(1):173-184. doi: 10.12153/j.issn.1674-991X.20210119LIU J X, CUI J, LIU H B, et al. Research progress of soil amelioration of acidified soil by soil amendments[J]. Journal of Environmental Engineering Technology,2022,12(1):173-184. doi: 10.12153/j.issn.1674-991X.20210119 [3] 成绍鑫. 腐植酸类物质概论[M]. 2版. 北京: 化学工业出版社, 2020. [4] 刘美, 王秀峰, 谷端银, 等. 育苗基质添加腐植酸促进番茄穴盘苗生长改善生理特性[J]. 植物营养与肥料学报,2016,22(6):1636-1644.LIU M, WANG X F, GU D Y, et al. Addition of humic acid in substrate increases growth and physiological properties of tomato plug seedlings[J]. Journal of Plant Nutrition and Fertilizers,2016,22(6):1636-1644. [5] 章智明, 黄占斌, 单瑞娟. 腐植酸对土壤改良作用探讨[J]. 环境与可持续发展,2013,38(3):109-111.ZHANG Z M, HUANG Z B, SHAN R J. Discussion of humic acid on soil amelioration[J]. Environment and Sustainable Development,2013,38(3):109-111. [6] DONG L H, YUAN H L. Nitrogen incorporation into lignite humic acids during microbial degradation[J]. Geomicrobiology Journal,2009,26(7):484-490. doi: 10.1080/01490450903061085 [7] ARAÚJO B R, ROMÃO L P C, DOUMER M E, et al. Evaluation of the interactions between chitosan and humics in media for the controlled release of nitrogen fertilizer[J]. Journal of Environmental Management,2017,190:122-131. [8] MAJI D, MISRA P, SINGH S, et al. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum[J]. Applied Soil Ecology,2017,110:97-108. doi: 10.1016/j.apsoil.2016.10.008 [9] 魏自民, 吴俊秋, 赵越, 等. 堆肥过程中氨基酸的产生及其对腐植酸形成的影响[J]. 环境工程技术学报,2016,6(4):377-383. doi: 10.3969/j.issn.1674-991X.2016.04.056WEI Z M, WU J Q, ZHAO Y, et al. Production of amino acids and its effect on the formation of humic acids during composting[J]. Journal of Environmental Engineering Technology,2016,6(4):377-383. doi: 10.3969/j.issn.1674-991X.2016.04.056 [10] WYSZKOWSKI M, KORDALA N, BRODOWSKA M S. Trace element content in soils with nitrogen fertilisation and humic acids addition[J]. Agriculture,2023,13(5):968. doi: 10.3390/agriculture13050968 [11] 龙惊惊, 李小明, 王远, 等. 液体肥增效剂对黄瓜果实产量和品质的影响[J]. 北方园艺,2018(17):115-123.LONG J J, LI X M, WANG Y, et al. Effect of liquid fertilizer synergist on yield and quality of cucumber fruit[J]. Northern Horticulture,2018(17):115-123. [12] 李慧, 谢志强, 李百云. 腐植酸有机肥对灵武长枣光合荧光参数及果实品质的影响[J]. 经济林研究,2023,41(4):133-141.LI H, XIE Z Q, LI B Y. Effects of humic acid organic fertilizer on photosynthetic fluorescence parameters and fruit quality of Ziziphus jujuba cv. Lingwuchangzao[J]. Non-wood Forest Research,2023,41(4):133-141. [13] 李慧, 李百云. 黄腐酸钾对灵武长枣氮素吸收、分配及利用的影响[J]. 湖北农业科学,2024,63(1):42-46.LI H, LI B Y. Effects of fulvic acid potassium on nitrogen absorption, distribution and utilization of Ziziphus jujuba Mill. cv. Lingwuchangzao[J]. Hubei Agricultural Sciences,2024,63(1):42-46. [14] MA Y Q, WOOLF D, FAN M S, et al. Global crop production increase by soil organic carbon[J]. Nature Geoscience,2023,16:1159-1165. doi: 10.1038/s41561-023-01302-3 [15] 杨海波, 陈运, 侯宪文. 生物腐植酸对土壤碳组分的影响[J]. 中国农学通报,2015,31(20):137-141.YANG H B, CHEN Y, HOU X W. Effects of biology humic acid on the component of soil carbon[J]. Chinese Agricultural Science Bulletin,2015,31(20):137-141. [16] 韩康, 黄春燕, 苏文斌, 等. 腐植酸型改良剂对盐碱地甜菜生长发育的影响[J]. 中国土壤与肥料,2023(11):189-194. doi: 10.11838/sfsc.1673-6257.22656HAN K, HUANG C Y, SU W B, et al. Effects of humic acid conditioners on the growth and development of sugar beet in saline-alkali soil[J]. Soil and Fertilizer Sciences in China,2023(11):189-194. doi: 10.11838/sfsc.1673-6257.22656 [17] 包日在, 孔海民, 李岗, 等. 基施黄腐酸钾对大棚杨梅营养生长及果实品质的影响[J]. 中国南方果树,2024,53(3):171-174.BAO R Z, KONG H M, LI G, et al. Effects of basal application of potassium fulvic acid on the vegetative growth and fruit quality of bayberry in greenhouse[J]. South China Fruits,2024,53(3):171-174. [18] 余小芬, 吴攀道, 雷轶玲, 等. 含腐植酸水溶肥料对杨梅果实产量和品质的影响[J]. 西南农业学报,2019,32(10):2355-2359.YU X F, WU P D, LEI Y L, et al. Effects of humic acid soluble fertilizer on yield and quality of Chinese bayberry[J]. Southwest China Journal of Agricultural Sciences,2019,32(10):2355-2359. [19] 朱会调, 高登涛, 白茹, 等. 黄腐酸对土壤养分、葡萄品质和产量的影响[J]. 新疆农业科学,2021,58(4):672-681.ZHU H D, GAO D T, BAI R, et al. Effects of fulvic acid on soil nutrients, grape quality and yield[J]. Xinjiang Agricultural Sciences,2021,58(4):672-681. [20] 朱会调, 高登涛, 白茹, 等. 黄腐酸对阳光玫瑰葡萄果实品质及产量的影响[J]. 石河子大学学报(自然科学版),2021,39(5):590-596.ZHU H D, GAO D T, BAI R, et al. Effects of fulvic acid on berry quality and yield of Shine Muscat grape[J]. Journal of Shihezi University (Natural Science),2021,39(5):590-596. [21] 李莉, 郝莉, 热甫开提, 等. 腐植酸复混肥对新疆膜下滴灌加工番茄产量和品质的影响[J]. 北方园艺,2018(8):114-122.LI L, HAO L, RE F, et al. Effect of applied different humic acid compound fertilizer on yield and quality of processing tomatoes under mulch drip irrigation in Xinjiang[J]. Northern Horticulture,2018(8):114-122. [22] 汪亚龙, 钟纯, 余赟, 等. 矿源黄腐酸钾和生物有机肥不同配比对番茄生长和产量的影响[J]. 腐植酸,2023(3):51-56.WANG Y L, ZHONG C, YU Y, et al. Effects of different ratios of mineral based potassium fulvate and bio-organic fertilizer on tomato growth and yield[J]. Humic Acid,2023(3):51-56. [23] 王森, 韩思训, 耿兵, 等. 不同施肥条件下生物腐植酸对磷的转化效果分析[J]. 中国农业气象,2013,34(5):551-556.WANG S, HAN S X, GENG B, et al. Effects of phosphorus transformation by bio-active humic acid under different fertilization[J]. Chinese Journal of Agrometeorology,2013,34(5):551-556. [24] 刘丽, 魏志峰, 石彩云, 等. 海藻水溶肥和黄腐酸水溶肥对富士苹果树体生长及果实品质的影响[J]. 果树学报,2023,40(5):893-901.LIU L, WEI Z F, SHI C Y, et al. Effects of alginate water soluble fertilizer and fulvic acid water soluble fertilizer on tree growth and fruit quality of Fuji apple[J]. Journal of Fruit Science,2023,40(5):893-901. [25] CANELLAS L P, TEIXEIRA L R L Jr, DOBBSS L B, et al. Humic acids crossinteractions with root and organic acids[J]. Annals of Applied Biology,2008,153(2):157-166. doi: 10.1111/j.1744-7348.2008.00249.x [26] CALVO P, NELSON L, KLOEPPER J W. Agricultural uses of plant biostimulants[J]. Plant and Soil,2014,383(1):3-41. [27] 陈环宇, 何苏南, 汤康, 等. 叶面喷施黄腐酸钾对玉米幼苗光合特性的影响[J]. 大麦与谷类科学,2024(1):43-48.CHEN H Y, HE S N, TANG K, et al. Effect of foliar spraying of potassium fulvic acid on photosynthetic characteristics of maize seedlings[J]. Barley and Cereal Sciences,2024(1):43-48. [28] 秦诗涵, 孙继光, 常坤, 等. 松嫩平原黑土区土壤有机质含量时空变化及其影响因素[J/OL]. 农业资源与环境学报. [2024-05-09]. https://doi.org/10.13254/j.jare.2023.0623. [29] 王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展[J]. 土壤,2016,48(1):12-21.WANG L D, WANG F L, GUO C X, et al. Review: progress of soil enzymology[J]. Soils,2016,48(1):12-21. [30] 乌日查呼,张卫青,张旭冉,等. 短期休牧对克氏针茅草原土壤蔗糖酶活性土壤有机质及pH的影响[J]. 农业与技术,2020,40(10):13- [31] 钱成宇, 郭景丽, 任荣奎, 等. 腐植酸尿素对土壤矿质氮含量及生菜品质的影响[J]. 中国瓜菜,2024,37(1):110-116.QIAN C Y, GUO J L, REN R K, et al. Impacts of humic acid urea on soil mineral N content and quality of lettuce[J]. China Cucurbits And Vegetables,2024,37(1):110-116. [32] 彭正萍, 门明新, 薛世川, 等. 腐植酸复合肥对土壤养分转化和土壤酶活性的影响[J]. 河北农业大学学报,2005,28(4):1-4.PENG Z P, MEN M X, XUE S C, et al. Effects of humic acid (HA) compound fertilizer on the conversion of soil nutrient and activities of soil enzyme[J]. Journal of Hebei Agricultural University,2005,28(4):1-4. [33] 吴崇书, 孟赐福, 吕晓男, 等. 红壤施用不同磷源对油菜产量和经济效益的影响[J]. 耕作与栽培,2002(3):42-43. [34] 陈玉娣, 关佩聪. 蕹菜的生长和养分吸收特性[J]. 长江蔬菜,1990(5):38-39. ⊕