Effects of different irrigation treatments on yield formation and nitrogen uptake in water-saving and drought-resistance rice
-
摘要:
为了阐明节水抗旱稻在不同灌溉量条件下产量形成特点及氮素吸收规律,设置100%(0.63 L/kg)、80%(0.51 L/kg)、60%(0.38 L/kg)、40%(0.26 L/kg)和20%(0.14 L/kg) 5个灌溉量处理,采用单因素方差分析不同灌溉量处理对节水抗旱稻品种(旱优73、WDR129)和传统水稻品种(H优518、扬粳4038)这4个供试水稻品种的产量构成因子、成熟期根系伤流速率、成熟期干重及氮素积累量的影响。结果表明,随着灌溉量的减少,4个供试品种的产量、产量构成因子、根系伤流液速率及干重均呈现下降趋势,且传统水稻品种H优518与扬粳4038的下降幅度大于节水抗旱稻品种旱优73和WDR129;低灌溉量处理对节水抗旱稻品种旱优73和WDR129影响较小,且氮素积累量高于传统水稻品种H优518和扬粳4038。研究显示,节水抗旱稻品种旱优73和WDR129通过维持较高的根系伤流液速率,保证了在低灌溉量条件下仍有较高的氮素积累量及产量。
Abstract:To elucidate the characteristics of yield formation and nitrogen uptake of water-saving and drought-resistance rice (WDR) under different irrigation conditions, five irrigation treatments were set up: 100% (0.63 L/kg), 80% (0.51 L/kg), 60% (0.38 L/kg), 40% (0.26 L/kg) and 20% (0.14 L/kg). Single factor analysis of variance was employed to investigate the impacts of different irrigation treatments on the yield components, the root wounding sap rate and the dry weight at maturity, and nitrogen accumulation of four test varieties, including HY73, WDR129, HY518 and YJ4038. The results demonstrated a reduction in yield, yield components, root wounding sap rate, and dry weight of the four test varieties with the reduction of irrigation. The decreases in the traditional rice varieties HY518 and YJ4038 were more severe than those of the WDR varieties HY73 and WDR129; the impacts of low irrigation treatments on the WDR varieties HY73 and WDR129 were slight, and the amount of nitrogen accumulated significantly higher than that of the traditional rice varieties HY518 and YJ4038. The research showed that the WDR varieties HY73 and WDR129 exhibited enhanced nitrogen accumulation and yield under low irrigation conditions, as a consequence of maintaining a higher rate of root wounding sap.
-
Key words:
- irrigation amount /
- water-saving and drought-resistance rice /
- yield /
- root wounding sap rate /
- nitrogen
-
表 1 不同灌溉量处理对水稻干重的影响
Table 1. Effect of different irrigation treatments on dry weight of water-saving and drought-resistant rice
品种 灌溉量/% 干重/(g/株) 叶 茎 穗 HY73 20 8.37d 12.77e 7.59e 40 9.84cd 14.82d 16.76d 60 11.26bc 17.35c 29.07c 80 12.32ab 19.93b 42.12b 100 13.61a 22.70a 48.38a 均值 11.08B 17.51B 28.78A HY518 20 9.99d 15.52e 3.37e 40 12.67c 18.45d 13.43d 60 12.31c 17.87d 19.51c 80 14.01b 21.19b 33.38b 100 15.72a 25.17a 51.72a 均值 12.94A 19.64A 24.28D WDR129 20 6.50d 13.56d 11.21e 40 7.95c 16.22c 20.93d 60 8.57bc 17.01b 30.18c 80 8.80b 17.17b 37.15b 100 10.75a 19.35a 42.91a 均值 8.51C 16.66C 28.48B YJ4038 20 6.42c 12.94c 9.77e 40 6.73c 13.30c 15.76d 60 7.78b 14.70b 21.99c 80 9.66a 18.79a 38.40b 100 10.22a 19.38a 41.81a 均值 8.16C 15.82D 25.54C 注:不同小写字母表示同一品种在不同处理间差异显著(P<0.05);不同大写字母表示不同品种间差异显著(P<0.05)。全文同。 表 2 不同灌溉量处理对水稻氮素浓度及氮素积累量的影响
Table 2. Effects of different irrigation treatments on nitrogen concentration and nitrogen accumulation in rice
品种 灌溉量/% 成熟期叶片
氮浓度/
(mg/g)成熟期茎鞘
氮浓度/
(mg/g)成熟期穗
氮浓度/
(mg/g)氮素
积累量/
(mg/株)HY73 20 1.94a 1.03a 1.36b 39.62e 40 1.72b 0.95ab 1.38b 54.22d 60 1.27c 0.87b 1.43ab 70.89c 80 1.07d 0.64c 1.47a 87.88b 100 0.95d 0.56c 1.50a 98.09a 均值 1.39B 0.81B 1.43A 70.14B HY518 20 1.99a 1.05a 1.34c 40.62e 40 1.88a 0.92b 1.36c 59.06d 60 1.91a 0.95b 1.39bc 67.62c 80 1.31b 0.75c 1.44ab 82.43b 100 1.22b 0.65d 1.46a 111.30a 均值 1.66A 0.86A 1.40B 72.21A WDR129 20 1.87a 0.83a 1.24d 37.27e 40 1.65b 0.76b 1.28cd 52.09d 60 1.53cd 0.72bc 1.30bc 64.59c 80 1.59bc 0.71bc 1.33ab 75.50b 100 1.42d 0.66d 1.36a 86.46a 均值 1.61A 0.74C 1.30C 63.18C YJ4038 20 1.89a 0.87a 1.12e 34.26e 40 1.69b 0.86ab 1.14d 40.81d 60 1.62bc 0.76bc 1.19c 49.89c 80 1.55cd 0.75c 1.21b 75.57b 100 1.47d 0.70c 1.23a 80.06a 均值 1.64A 0.79BC 1.18D 56.12D -
[1] GRAYSON M. Agriculture and drought[J]. Nature,2013,501:S1. doi: 10.1038/501S1a [2] HERRERA D A, AULT T R, FASULLO J T, et al. Exacerbation of the 2013-2016 Pan-Caribbean drought by anthropogenic warming[J]. Geophysical Research Letters,2018,45(19):10619-10626. [3] BOYER J S. Plant productivity and environment[J]. Science,1982,218(4571):443-448. doi: 10.1126/science.218.4571.443 [4] BARTELS D, SUNKAR R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences,2005,24(1):23-58. doi: 10.1080/07352680590910410 [5] BARNABÁS B, JÄGER K, FEHÉR A. The effect of drought and heat stress on reproductive processes in cereals[J]. Plant, Cell & Environment, 2008, 31(1): 11-38. [6] FIELD C B. Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change[M]. Cambridge : Cambridge University Press, 2012. [7] WANG Q F, WU J J, LEI T J, et al. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale[J]. Quaternary International,2014,349:10-21. doi: 10.1016/j.quaint.2014.06.021 [8] TRENBERTH K E, DAI A G, van der SCHRIER G, et al. Global warming and changes in drought[J]. Nature Climate Change,2014,4:17-22. doi: 10.1038/nclimate2067 [9] AULT T R. On the essentials of drought in a changing climate[J]. Science,2020,368(6488):256-260. doi: 10.1126/science.aaz5492 [10] MASSON-DELMOTTE V. Climate change 2021: the physical science basis: Working Group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2023. [11] ZHANG Q F. Strategies for developing green super rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(42):16402-16409. [12] LUO L J. Breeding for water-saving and drought-resistance rice (WDR) in China[J]. Journal of Experimental Botany,2010,61(13):3509-3517. doi: 10.1093/jxb/erq185 [13] 毕俊国, 刘国兰, 张安宁, 等. 一种测定节水抗旱稻耗水量的栽培装置及其使用方法: CN105340658B[P]. 2019-05-28. [14] 凌启鸿, 张洪程, 丁艳锋, 等. 水稻精确定量栽培理论与技术[M]. 北京: 中国农业出版社, 2007: 76-91. [15] GUAN Y S, SERRAJ R, LIU S H, et al. Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L. )[J]. Journal of Experimental Botany,2010,61(15):4145-4156. doi: 10.1093/jxb/erq212 [16] SERRAJ R, McNALLY K L, SLAMET-LOEDIN I, et al. Drought resistance improvement in rice: an integrated genetic and resource management strategy[J]. Plant Production Science,2011,14(1):1-14. doi: 10.1626/pps.14.1 [17] DOLFERUS R, JI X M, RICHARDS R A. Abiotic stress and control of grain number in cereals[J]. Plant Science,2011,181(4):331-341. doi: 10.1016/j.plantsci.2011.05.015 [18] 谢华英, 马均, 代邹, 等. 抽穗期高温干旱胁迫对杂交水稻产量及生理特性的影响[J]. 杂交水稻,2016,31(1):62-69.XIE H Y, MA J, DAI Z, et al. Effects of high temperature and drought stress in heading stage on grain yield and physiological characteristics of hybrid rice[J]. Hybrid Rice,2016,31(1):62-69. [19] 陈佳娜, 谢小兵, 伍丹丹, 等. 水稻伤流液研究进展[J]. 中国农学通报,2015,31(9):9-12. doi: 10.11924/j.issn.1000-6850.2014-2340CHEN J N, XIE X B, WU D D, et al. Research advances on rice bleeding sap[J]. Chinese Agricultural Science Bulletin,2015,31(9):9-12. doi: 10.11924/j.issn.1000-6850.2014-2340 [20] 卢贤丰. 测定伤流液诊断水稻根系活力[J]. 农业科技通讯,1977(9):19. [21] DICKINSON A J, LEHNER K, MI J N, et al. β-Cyclocitral is a conserved root growth regulator[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(21):10563-10567. [22] CHAVES M M, PEREIRA J S, MAROCO J, et al. How plants cope with water stress in the field. Photosynthesis and growth[J]. Annals of Botany, 2002, 89(7): 907-916. [23] DING L, LU Z F, GAO L M, et al. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress[J]. Frontiers in Plant Science,2018,9:1143. doi: 10.3389/fpls.2018.01143 [24] LI W, LIU J Q, LI Z Q, et al. Mitigating growth-stress tradeoffs via elevated TOR signaling in rice[J]. Molecular Plant,2024,17(2):240-257. doi: 10.1016/j.molp.2023.12.002 [25] ANANDAN A, PANDA S, SABARINATHAN S, et al. Superior haplotypes for early root vigor traits in rice under dry direct seeded low nitrogen condition through genome wide association mapping[J]. Frontiers in Plant Science,2022,13:911775. ⊕ doi: 10.3389/fpls.2022.911775