Effects of crop patterns and straw management on greenhouse gas emissions in paddy fields
-
摘要:
在浙江省嘉善县选取1.3 hm2稻田,设置节水旱管+秸秆还田/不还田与普通淹灌+秸秆还田/不还田2种种植模式4个处理组(以下简称节水还田、节水不还田、普通还田、普通不还田),采用静态箱-气相色谱法获取28批次336个稻田甲烷(CH4)和氧化亚氮(N2O)排放数据,同时结合土壤颗粒有机碳(POC)等6个环境因子12个样品分析结果,探究种植模式协同秸秆管理对稻田温室气体排放特征的影响。结果显示:1)CH4累计排放量依次为普通还田>普通不还田>节水还田>节水不还田,N2O累计排放量为普通还田>节水不还田>节水还田>普通不还田。全球增温潜势(GWP)与温室气体排放强度(GHGI),普通还田最高,分别为7 696.03 kg/hm2(以CO2计,全文同)、0.97 kg/kg;节水不还田最低,分别为2 110.12 kg/hm2、0.21 kg/kg。2)最小显著差异法分析结果表明,各处理组之间CH4累计排放量存在显著差异。据Pearson相关性分析结果,CH4累计排放量与POC含量呈极显著正相关(P<0.01),与微生物碳含量呈显著正相关(P<0.05);N2O累计排放量则与硝态氮(${\mathrm{NO}}_3^- $-N)含量呈显著正相关(P<0.05),GWP、GHGI与POC含量呈极显著正相关(P<0.01)。3)种植模式与秸秆管理均对CH4累计排放量有极显著影响(P<0.01),二者交互作用对CH4累计排放量、N2O累计排放量有显著影响(P<0.05)。研究表明,水稻节水旱管种植协同秸秆还田措施是一种气候友好型的高产经济种植模式,既可保证粮食安全,降低秸秆离田成本,对于减缓全球温室效应也具有积极作用。
-
关键词:
- 节水旱管 /
- 秸秆还田 /
- 稻田温室气体 /
- 全球增温潜势(GWP) /
- 温室气体排放强度(GHGI)
Abstract:A 1.3 hm2 paddy field was selected in Jiashan County, Zhejiang Province, and four treatment groups, briefly referred to as water-saving irrigation, water-saving non-returning, ordinary returning, and ordinary non-returning, were set up with two planting modes, namely water-saving drought pipe + straw returning/non-returning and ordinary inundation irrigation + straw returning/non-returning. The methane (CH4) and nitrous oxide (N2O) emission data from 336 rice fields in 28 batches obtained by static box gas chromatography, in combination with the analysis results of 12 samples of 6 environmental factors, including soil particulate organic carbon (POC), were used to explore the influence of planting mode and straw management on greenhouse gas emission characteristics of rice fields. The results showed as follows: (1) The cumulative CH4 emissions were in the order of ordinary returning > ordinary non-returning > water-saving returning > water-saving non-returning, and the cumulative N2O emissions were in the order of ordinary returning > water-saving non-returning > water-saving returning > ordinary non-returning. The global warming potential (GWP) and greenhouse gas emission intensity (GHGI) of ordinary returning group were the highest, being 7 696.03 kg/hm2 (calculated as CO2) and 0.97 kg/kg, and those of water-saving non-returning group were the lowest, being 2 110.12 kg/hm2 and 0.21 kg/kg, respectively. (2) The analysis results of the least significant difference method showed significant differences in cumulative CH4 emissions among the treatment groups. According to Pearson correlation analysis, the cumulative CH4 emission was extremely significantly positively correlated with POC content (P <0.01) and significantly positively correlated with microbial carbon content (P <0.05). The cumulative emission of N2O was significantly positively correlated with ${\mathrm{NO}}_3^- $-N content (P <0.05), and GWP and GHGI were extremely significantly positively correlated with POC content (P <0.01). (3) Both planting mode and straw management had extremely significant effects on CH4 cumulative emissions (P <0.01), and their interaction had significant effects on CH4 cumulative emissions and N2O cumulative emissions (P <0.05). The research shows that rice water-saving and drought-tube planting combined with straw returning is a climate-friendly high-yield and economic planting model, which can ensure food security, reduce the cost of straw leaving the field, and play a positive role in slowing down the global greenhouse effect.
-
表 1 不同处理下温室气体排放与水稻产量的描述性统计特征
Table 1. Descriptive statistical characteristics of greenhouse gas emissions and rice yield under different treatments
处理 CH4累计排放量/(kg/hm2) N2O累计排放量/(kg/hm2) 产量/(kg/hm2) GWP/(kg/hm2) GHGI/ (kg/kg) 节水还田 48.39±4.47c 6.20±0.99ab 9 121.50±237.92b 2 999.60±389.62bc 0.33±0.05bc 节水不还田 9.82±0.39d 6.76±1.10ab 10 048.71±188.67a 2 110.12±291.15c 0.21±0.04c 普通还田 207.84±12.04a 7.63±0.94a 7 907.62±93.32c 7 696.03±580.64a 0.97±0.07a 普通不还田 100.33±9.30b 4.34±0.47b 8 454.96±386.70bc 3 894.14±380.44b 0.46±0.04b 表 2 不同处理水稻产量构成因素
Table 2. Factors of rice yield under different treatments
处理 有效穗数/(104/hm2) 穗粒数/粒 结实率/% 千粒重/g 节水还田 298.37±5.47b 127.79±2.71b 92.65±0.71a 25.80±1.15a 节水不还田 335.59±13.88a 139.56±2.52a 82.36±0.84b 25.80±0.58a 普通还田 282.14±3.46b 119.15±0.72b 91.18±0.59a 25.80±0.87a 普通不还田 286.14±1.15b 123.05±3.55b 92.97±1.20a 25.80±0.46a 注:同列不同字母表示不同处理间差异显著(P<0.05)。全文同。 表 3 不同处理下温室气体排放与水稻产量对种植模式与秸秆管理的响应
Table 3. Responses of greenhouse gas emissions and rice yield to planting patterns and straw management under different treatments
处理 CH4累计排放量 N2O累计排放量 产量 GWP GHGI 种植模式 99.30** 0.29ns 29.29** 50.74** 81.77** 秸秆管理 33.91** 2.27ns 7.63* 25.63** 40.24** 种植模式 × 秸秆管理 7.56* 4.50* 0.44ns 13.66* 15.85** 注:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示无显著影响。 -
[1] IPCC. Climate change 2021: the physical science basis [M]. Cambridge: Cambridge University Press, 2021. [2] IPCC. Climate change 2013: the physical science basis: working Group Ⅰ contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014. [3] SUN H F, ZHOU S, SONG X F, et al. CH4 emission in response to water-saving and drought-resistance rice (WDR) and common rice varieties under different irrigation managements[J]. Water, Air, & Soil Pollution, 2016, 227(2): 47. [4] ZHANG G B, JI Y, MA J, et al. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique[J]. Soil Biology and Biochemistry,2012,52:108-116. doi: 10.1016/j.soilbio.2012.04.017 [5] 张西超, 叶旭红, 韩冰, 等. 灌溉方式对设施土壤温室气体排放的影响[J]. 环境科学研究,2016,29(10):1487-1496.ZHANG X C, YE X H, HAN B, et al. Effects of irrigation methods on emissions of greenhouse gases from facilities soil[J]. Research of Environmental Sciences,2016,29(10):1487-1496. [6] LIANG K M, ZHONG X H, HUANG N R, et al. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in South China[J]. Agricultural Water Management,2016,163:319-331. doi: 10.1016/j.agwat.2015.10.015 [7] 罗利军. 节水抗旱稻的概念与发展历程[J]. 上海农业学报,2022,38(4):1-8.LUO L J. Concept and development history of water-saving and drought-resistance rice(WDR)[J]. Acta Agriculturae Shanghai,2022,38(4):1-8. [8] 张鲜鲜, 毕俊国, 孙会峰, 等. 旱管种植节水抗旱稻的温室气体减排效应研究[J]. 上海农业学报,2022,38(4):134-140.ZHANG X X, BI J G, SUN H F, et al. Greenhouse gas mitigation potential of water-saving and drought-resistance rice under dry cultivation[J]. Acta Agriculturae Shanghai,2022,38(4):134-140. [9] 戴相林, 刘雅辉, 孙建平, 等. 秸秆还田和氮肥减施对滨海盐渍土稻田温室气体排放及氮肥利用率的影响[J]. 应用与环境生物学报,2023,29(4):994-1005.DAI X L, LIU Y H, SUN J P, et al. Combined effects of straw return and reduced nitrogen fertilizer application on greenhouse gas emissions and nitrogen use efficiency in a coastal saline paddy field[J]. Chinese Journal of Applied and Environmental Biology,2023,29(4):994-1005. [10] 陈云, 孟轶, 翁文安, 等. 硝化抑制剂双氰胺施用对水稻产量和温室气体排放的影响[J]. 中国稻米,2024,30(1):26-29. doi: 10.3969/j.issn.1006-8082.2024.01.004CHEN Y, MENG Y, WENG W A, et al. Effects of nitrification inhibitor dicyandiamide application on rice yield and greenhouse gas emissions[J]. China Rice,2024,30(1):26-29. doi: 10.3969/j.issn.1006-8082.2024.01.004 [11] 王书伟, 吴正贵, 孙永泉, 等. 太湖地区典型轮作与休耕方式对稻田水稻季N2O和CH4排放量的影响[J]. 生态环境学报,2021,30(1):63-71.WANG S W, WU Z G, SUN Y Q, et al. Effects of typical crop rotation systems and land fallow on paddy soil N2O and CH4 emissions in Taihu Lake Region of China[J]. Ecology and Environmental Sciences,2021,30(1):63-71. [12] NIE T Z, CHEN P, ZHANG Z X, et al. Effects of irrigation method and rice straw incorporation on CH4 emissions of paddy fields in Northeast China[J]. Paddy and Water Environment,2020,18(1):111-120. doi: 10.1007/s10333-019-00768-5 [13] 胡天怡, 车佳玥, 胡煜杰, 等. 秸秆还田和添加生物炭对热带地区稻菜轮作体系中淹水后土壤温室气体排放的影响[J]. 环境科学,2024,45(3):1692-1701.HU T Y, CHE J Y, HU Y J, et al. Effects of straw returning and biochar addition on greenhouse gas emissions from high nitrate nitrogen soil after flooding in rice-vegetable rotation system in tropical China[J]. Environmental Science,2024,45(3):1692-1701. [14] 张斌, 刘晓雨, 潘根兴, 等. 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J]. 中国农业科学,2012,45(23):4844-4853. doi: 10.3864/j.issn.0578-1752.2012.23.011ZHANG B, LIU X Y, PAN G X, et al. Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles[J]. Scientia Agricultura Sinica,2012,45(23):4844-4853. doi: 10.3864/j.issn.0578-1752.2012.23.011 [15] YANG J, LIU G J, TIAN H Y, et al. Trade-offs between wheat soil N2O emissions and C sequestration under straw return, elevated CO2 concentration, and elevated temperature[J]. The Science of the Total Environment,2023,892:164508. doi: 10.1016/j.scitotenv.2023.164508 [16] JOHN K, JANZ B, KIESE R, et al. Earthworms offset straw-induced increase of greenhouse gas emission in upland rice production[J]. The Science of the Total Environment,2020,710:136352. doi: 10.1016/j.scitotenv.2019.136352 [17] 胡永浩, 张昆扬, 胡南燕, 等. 中国农业碳排放测算研究综述[J]. 中国生态农业学报(中英文),2023,31(2):163-176. doi: 10.12357/cjea.20220777HU Y H, ZHANG K Y, HU N Y, et al. Review on measurement of agricultural carbon emission in China[J]. Chinese Journal of Eco-Agriculture,2023,31(2):163-176. doi: 10.12357/cjea.20220777 [18] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [19] JENKINSON D S, POWLSON D S. The effects of biocidal treatments on metabolism in soil: Ⅴ[J]. Soil Biology and Biochemistry,1976,8(3):209-213. doi: 10.1016/0038-0717(76)90005-5 [20] 李成伟, 刘章勇, 龚松玲, 等. 稻作模式改变对稻田CH4和N2O排放的影响[J]. 生态环境学报,2022,31(5):961-968.LI C W, LIU Z Y, GONG S L, et al. Effects of changing rice cropping patterns on CH4 and N2O emissions from paddy fields[J]. Ecology and Environmental Sciences,2022,31(5):961-968. [21] IPCC. Climate change 2021: the physical science basis: working Group Ⅰ contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2021. [22] 唐志伟, 张俊, 邓艾兴, 等. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报(中英文),2022,30(4):582-591. doi: 10.12357/cjea.20210887TANG Z W, ZHANG J, DENG A X, et al. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China[J]. Chinese Journal of Eco-Agriculture,2022,30(4):582-591. doi: 10.12357/cjea.20210887 [23] 李道西. 农田水管理下的稻田甲烷排放研究进展[J]. 灌溉排水学报,2010,29(1):133-135.LI D X. Variations of methane emission of paddy fields under farmland water management[J]. Journal of Irrigation and Drainage,2010,29(1):133-135. [24] HAO Q J, JIANG C S, CHAI X S, et al. Drainage, no-tillage and crop rotation decreases annual cumulative emissions of methane and nitrous oxide from a rice field in Southwest China[J]. Agriculture, Ecosystems & Environment, 2016, 233: 270-281. [25] MINAMIKAWA K, FUMOTO T, ITOH M, et al. Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model[J]. Biology and Fertility of Soils,2014,50(6):879-889. doi: 10.1007/s00374-014-0909-8 [26] 丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1672-1679.DING W X, CAI Z C. Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands[J]. Acta Ecologica Sinica, 2002, 22(10): 1672-1679. [27] 吴家梅, 霍莲杰, 纪雄辉, 等. 不同施肥处理对土壤活性有机碳和甲烷排放的影响[J]. 生态学报,2017,37(18):6167-6175.WU J M, HUO L J, JI X H, et al. Effects of organic manure application on active soil organic carbon and methane emission in paddy soils[J]. Acta Ecologica Sinica,2017,37(18):6167-6175. [28] 傅志强, 龙攀, 刘依依, 等. 水氮组合模式对双季稻甲烷和氧化亚氮排放的影响[J]. 环境科学,2015,36(9):3365-3372FU Z Q, LONG P, LIU Y Y, et al. Effects of water and nitrogenous fertilizer coupling on CH4 and N2O emission from double-season rice paddy field[J]. Environmental Science,2015,36(9):3365-3372 [29] 徐华, 蔡祖聪, 李小平. 烤田对种稻土壤甲烷排放的影响[J]. 土壤学报,2000,37(1):69-76. doi: 10.3321/j.issn:0564-3929.2000.01.009XU H, CAI Z C, LI X P. Effect of soil drying on ch4 flux from rice paddy soil[J]. Acta Pedologica Sinica,2000,37(1):69-76. doi: 10.3321/j.issn:0564-3929.2000.01.009 [30] 肖万川, 贾宏伟, 邱昕恺, 等. 水稻适雨灌溉对稻田CH4和N2O排放的影响[J]. 灌溉排水学报,2017,36(11):36-40.XIAO W C, JIA H W, QIU X K, et al. Effects of irrigation adjusted by rainfall on emissions of CH4 and N2O from paddy fields[J]. Journal of Irrigation and Drainage,2017,36(11):36-40. [31] 马洪运, 周磊, 张雪琦, 等. 人工湿地温室气体排放研究进展与减污降碳优化[J]. 环境工程技术学报,2023,13(6):2043-2052. doi: 10.12153/j.issn.1674-991X.20230175MA H Y, ZHOU L, ZHANG X Q, et al. Research progress of greenhouse gas emissions and optimization of pollution removal and carbon reduction in constructed wetland[J]. Journal of Environmental Engineering Technology,2023,13(6):2043-2052. doi: 10.12153/j.issn.1674-991X.20230175 [32] KHALIQ M A, KHAN TARIN M W, GUO J X, et al. Soil liming effects on CH4, N2O emission and Cd, Pb accumulation in upland and paddy rice[J]. Environmental Pollution,2019,248:408-420. doi: 10.1016/j.envpol.2019.02.036 [33] MATHIEU O, HÉNAULT C, LÉVÊQUE J, et al. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers[J]. Environmental Pollution,2006,144(3):933-940. doi: 10.1016/j.envpol.2006.02.005 [34] AZZIZ G, MONZA J, ETCHEBEHERE C, et al. nirS- and nirK-type denitrifier communities are differentially affected by soil type, rice cultivar and water management[J]. European Journal of Soil Biology,2017,78:20-28. doi: 10.1016/j.ejsobi.2016.11.003 [35] ZHOU S, SUN H F, BI J G, et al. Effect of water-saving irrigation on the N2O dynamics and the contribution of exogenous and endogenous nitrogen to N2O production in paddy soil using 15N tracing[J]. Soil and Tillage Research,2020,200:104610. doi: 10.1016/j.still.2020.104610 [36] 张作合, 张忠学, 李铁成, 等. 水炭运筹对黑土稻田N2O排放与氮肥利用的影响[J]. 农业机械学报,2021,52(11):323-332. doi: 10.6041/j.issn.1000-1298.2021.11.035ZHANG Z H, ZHANG Z X, LI T C, et al. Effects of water and biochar management on N2O emission and nitrogen use efficiency in black soil paddy field[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):323-332. doi: 10.6041/j.issn.1000-1298.2021.11.035 [37] SMITH K A, THOMSON P E, CLAYTON H, et al. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils[J]. Atmospheric Environment,1998,32(19):3301-3309. doi: 10.1016/S1352-2310(97)00492-5 [38] 薛里, 张忠学, 齐智娟, 等. 节水灌溉下秸秆还田形式对黑土区稻田N2O排放与产量的影响[J]. 农业机械学报,2024,55(4):280-289. doi: 10.6041/j.issn.1000-1298.2024.04.028XUE L, ZHANG Z X, QI Z J, et al. Effects of straw returning on N2O emission and yield under water-saving irrigation in black soil paddy field[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):280-289. doi: 10.6041/j.issn.1000-1298.2024.04.028 [39] 马小婷, 隋玉柱, 朱振林, 等. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展[J]. 江苏农业科学,2017,45(6):14-20. [40] 汤宏, 曾掌权, 沈健林, 等. 秸秆与水分管理稻田的温室气体排放和碳固定[J]. 环境科学与技术,2021,44(1):41-48.TANG H, ZENG Z Q, SHEN J L, et al. Greenhouse gases emissions and carbon sequestration by soils in rice paddy fields as affected by rice straw incorporation and water management[J]. Environmental Science & Technology,2021,44(1):41-48. [41] BOSSIO D. Methane pool and flux dynamics in a rice field following straw incorporation[J]. Soil Biology and Biochemistry,1999,31(9):1313-1322. doi: 10.1016/S0038-0717(99)00050-4 [42] 郑梅群, 刘娟, 姜培坤, 等. 氮肥运筹对稻田CH4和N2O排放的影响[J]. 环境科学,2022,43(4):2171-2181.ZHENG M Q, LIU J, JIANG P K, et al. Effects of nitrogen fertilizer management on CH4 and N2O emissions in paddy field[J]. Environmental Science ,2022,43(4):2171-2181. [43] ZOU J W, HUANG Y, ZONG L G, et al. A field study on CO2, CH4 and N2O emissions from rice paddy and impact factors[J]. Acta Scientiae Circumstantiae,2003,23(6):758-764. [44] 蔡敏, 崔娜欣, 张旭, 等. 稻秸秆添加强化沉水植物湿地对农田径流中不同形态氮的去除效果[J]. 环境工程技术学报,2023,13(5):1829-1838. doi: 10.12153/j.issn.1674-991X.20230043CAI M, CUI N X, ZHANG X, et al. Removal efficiency of different forms of nitrogen from farmland runoff by adding rice straw in submerged plant wetland[J]. Journal of Environmental Engineering Technology,2023,13(5):1829-1838. doi: 10.12153/j.issn.1674-991X.20230043 [45] 章骁劼. 生物炭、水分和氮源对农田土壤N2O排放和相关微生物的影响[D]. 杭州: 浙江大学, 2017. [46] 昝鹏, 陈燕萍. 不同水肥耦合水稻温室效应及氮素利用率研究[J]. 节水灌溉,2018(2):56-60. doi: 10.3969/j.issn.1007-4929.2018.02.012ZAN P, CHEN Y P. A study on greenhouse effect and water and nitrogen use efficiency under different water and fertilizer coupling modes[J]. Water Saving Irrigation,2018(2):56-60. □ doi: 10.3969/j.issn.1007-4929.2018.02.012