留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同施肥处理添加生物炭对设施农业土壤不同形态氮的影响

李婧睿 任凤玲 李亚林 魏雪勤 孙楠

李婧睿,任凤玲,李亚林,等.不同施肥处理添加生物炭对设施农业土壤不同形态氮的影响[J].环境工程技术学报,2024,14(5):1550-1559 doi: 10.12153/j.issn.1674-991X.20240341
引用本文: 李婧睿,任凤玲,李亚林,等.不同施肥处理添加生物炭对设施农业土壤不同形态氮的影响[J].环境工程技术学报,2024,14(5):1550-1559 doi: 10.12153/j.issn.1674-991X.20240341
LI J R,REN F L,LI Y L,et al.Effects of biochar addition on different forms of nitrogen in facility agricultural soils under various fertilization regimes[J].Journal of Environmental Engineering Technology,2024,14(5):1550-1559 doi: 10.12153/j.issn.1674-991X.20240341
Citation: LI J R,REN F L,LI Y L,et al.Effects of biochar addition on different forms of nitrogen in facility agricultural soils under various fertilization regimes[J].Journal of Environmental Engineering Technology,2024,14(5):1550-1559 doi: 10.12153/j.issn.1674-991X.20240341

不同施肥处理添加生物炭对设施农业土壤不同形态氮的影响

doi: 10.12153/j.issn.1674-991X.20240341
基金项目: 国家自然科学基金项目(42177341)
详细信息
    作者简介:

    李婧睿(2005—),女,主要从事智慧农业和设施农业研究,Ljr15910951582@163.com

    通讯作者:

    任凤玲(1992—),女,博士,主要从事土壤培肥与肥力演变及土壤改良等方面的研究,flren0302@163.com

    孙楠(1975—),女,研究员,主要从事土壤培肥与肥力演变及土壤改良等方面的研究,sunnan@caas.cn

  • 中图分类号: X53

Effects of biochar addition on different forms of nitrogen in facility agricultural soils under various fertilization regimes

  • 摘要:

    生物炭在设施农业土壤中施用,对土壤氮形态具有显著影响。探明不同施肥处理添加生物炭对设施农业土壤不同形态氮的影响,可为设施农业施用生物炭减排提供科学依据。以设施菜地土壤(褐潮土)为研究对象,设置不施肥(CK)、施用有机肥(M)、化肥(F)、有机无机混施(M+F)4种处理下投入2%和4%(生物炭与土壤干质量比)生物炭处理,采用室内恒温好氧培养-气相色谱测定方法监测土壤N2O释放量,测定土壤中可溶性有机氮(DON)和无机氮(Nmin)的含量,并分析DON、Nmin含量变化及其与土壤N2O释放量变化之间的关系。研究表明,生物炭的施用在不同条件下对土壤N2O的释放速率和累积释放量产生不同影响。在CK和M处理下,生物炭在施用初期(第0~1.5天)显著促进了土壤中N2O的释放,但随后(第2~60天),在CK处理下,生物炭的添加对N2O的释放速率和累积释放量没有产生显著影响。同样地,在M处理下,生物炭的添加也未对N2O的释放速率产生显著作用。然而,在培养结束时,添加4%的生物炭显著提高了土壤中N2O的累积释放量。值得注意的是,在F和M+F的处理中,生物炭的加入在初期阶段(第0~2天)有效地降低了土壤N2O的释放速率,这种降低效果随着生物炭施用量的增加而变得更加显著。在F和M+F处理下,添加生物炭在不同时间段内(第2~25天和第3~14天)显著增加了土壤N2O释放速率,但对该速率的影响在后续阶段并不显著。培养结束后,F处理下,添加2%和4%生物炭的土壤N2O累积释放量分别显著提高78%和90%;M+F处理下,添加2%和4%生物炭的土壤N2O累积释放量分别显著提高80%和67%。相关性分析结果显示,在施用生物炭的土壤中,DON和Nmin的含量与N2O的排放量之间存在明显的正相关关系。表明生物炭的添加通过调整土壤中DON和Nmin的含量,对N2O的排放产生了直接影响。将生物炭投入到不同的施肥土壤中,土壤N2O的释放速率和累积释放量出现不同的变化趋势,但是由于生物炭自身特性的多样性、配施化肥和有机肥种类的差异、施肥方式和时间的差异等,因此分析生物炭添加后对土壤N2O累积释放量影响时,需要根据研究时的具体条件做合理分析。

     

  • 图  1  不同施肥处理下土壤中N2O释放速率

    Figure  1.  Release rates of N2O in soil under different treatments during incubation

    图  2  不同施肥处理下土壤中N2O累积释放量

    Figure  2.  Accumulative release of N2O in soil under different treatments duirng incubation

    图  3  不同施肥处理下土壤中DON含量动态变化

    Figure  3.  Dynamics of DON content in soil in different treatments during incubation

    图  4  不同施肥处理下土壤中Nmin含量动态变化

    Figure  4.  Dynamics of Nmin content in soil under different treatments during incubation

    图  5  生物炭添加处理中DON、Nmin含量与N2O累积释放量之间的相关性

    注:**表示在P<0.01水平上显著相关。

    Figure  5.  Correlation between DON, Nmin contents and N2O cumulative release under different treatments with biochar addition

    表  1  添加物料的基本性质

    Table  1.   Basic properties of materials used

    物料有机碳含
    量/(g/kg)
    TN含量/
    (g/kg)
    TP含量/
    (g/kg)
    TK含量/
    (g/kg)
    pH
    有机肥138.114.136.3330.888.09
    生物炭374.42.251.915.189.76
    下载: 导出CSV

    表  2  不同处理的肥料以及C、N添加量

    Table  2.   Amount of materials added and input of C and N in different treatments

    处理 鲜土质量/g 商品有机肥
    添加量/g
    尿素添加
    量/g
    生物炭
    添加量/g
    CK71.43
    M71.431.8
    F71.430.054 5
    M+F71.431.80.054 5
    B171.431.2
    B271.432.4
    M+B171.431.81.2
    M+B271.431.82.4
    F+B171.430.054 51.2
    F+B271.430.054 52.4
    M+F+B171.431.80.054 51.2
    M+F+B271.431.80.054 52.4
    下载: 导出CSV
  • [1] STOCKER T F, QIN D, PLATTNER G. Contribution of working group Ⅰ to the fifth assessment report of the Intergovernmental Panel on Climate Change[C]//Climate Change 2013: the Physical Science Basis. Cambridge: Cambridge University Press, 2013.
    [2] KROEZE C, MOSIER A, BOUWMAN L. Closing the global N2O budget: a retrospective analysis 1500-1994[J]. Global Biogeochemical Cycles,1999,13(1):1-8. doi: 10.1029/1998GB900020
    [3] LOECKE T D, ROBERTSON G P. Soil resource heterogeneity in terms of litter aggregation promotes nitrous oxide fluxes and slows decomposition[J]. Soil Biology and Biochemistry,2009,41(2):228-235. doi: 10.1016/j.soilbio.2008.10.017
    [4] 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学,2011,13(2):83-89.

    CHEN W F, ZHANG W M, MENG J, et al. Researches on biochar application technology[J]. Strategic Study of CAE,2011,13(2):83-89.
    [5] LEHMANN J, JOSEPH S. Biochar for environmental management: science and technology[M]. London: Earthscan, 2009.
    [6] 吴伟祥, 孙雪, 董达, 等. 生物质炭土壤环境效应[M]. 北京: 科学出版社, 2015: 90-91.
    [7] ZHANG D X, PAN G X, WU G, et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol[J]. Chemosphere,2016,142:106-113. doi: 10.1016/j.chemosphere.2015.04.088
    [8] 程功, 刘廷玺, 李东方, 等. 生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响[J]. 中国生态农业学报(中英文),2019,27(7):1004-1014.

    CHENG G, LIU T X, LI D F, et al. Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions[J]. Chinese Journal of Eco-Agriculture,2019,27(7):1004-1014.
    [9] CAYUELA M L, SÁNCHEZ-MONEDERO M A, ROIG A, et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions[J]. Scientific Reports,2013,3:1732. doi: 10.1038/srep01732
    [10] LIN Y X, DING W X, LIU D Y, et al. Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria[J]. Soil Biology and Biochemistry,2017,113:89-98. doi: 10.1016/j.soilbio.2017.06.001
    [11] NELISSEN V, SAHA B K, RUYSSCHAERT G, et al. Effect of different biochar and fertilizer types on N2O and NO emissions[J]. Soil Biology and Biochemistry,2014,70:244-255. doi: 10.1016/j.soilbio.2013.12.026
    [12] GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review[J]. Biology and Fertility of Soils,2002,35(4):219-230. doi: 10.1007/s00374-002-0466-4
    [13] ZIMMERMANN M, BIRD M I, WURSTER C, et al. Rapid degradation of pyrogenic carbon[J]. Global Change Biology,2012,18(11):3306-3316. doi: 10.1111/j.1365-2486.2012.02796.x
    [14] AMELOOT N, de NEVE S, JEGAJEEVAGAN K, et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biology and Biochemistry,2013,57:401-410. doi: 10.1016/j.soilbio.2012.10.025
    [15] ZIMMERMAN A R, GAO B, AHN M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry,2011,43(6):1169-1179. doi: 10.1016/j.soilbio.2011.02.005
    [16] SÁNCHEZ-GARCÍA M, ALBURQUERQUE J A, SÁNCHEZ-MONEDERO M A, et al. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions[J]. Bioresource Technology,2015,192:272-279. doi: 10.1016/j.biortech.2015.05.003
    [17] FAHAD S, HUSSAIN S, SAUD S, et al. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice[J]. Plant Physiology and Biochemistry: PPB,2016,103:191-198. doi: 10.1016/j.plaphy.2016.03.001
    [18] AGEGNEHU G, BASS A M, NELSON P N, et al. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil[J]. The Science of the Total Environment, 2016, 543(Pt A): 295-306.
    [19] 邓正昕, 高明, 熊子怡, 等. 有机肥配施生物炭对果园土壤反硝化微生物和酶活性的影响[J]. 环境科学,2023,44(12):6955-6964.

    DENG Z X, GAO M, XIONG Z Y, et al. Effects of organic fertilizer combined with biochar on denitrifying microorganisms and enzyme activities in orchard soil[J]. Environmental Science,2023,44(12):6955-6964.
    [20] 于亚军, 朱波, 荆光军. 成都平原土壤-蔬菜系统N2O排放特征[J]. 中国环境科学,2008,28(4):313-318.

    YU Y J, ZHU B, JING G J. N2O emission from soil-vegetable system and impact factors in Chengdu Plain of Sichuan Basin[J]. China Environmental Science,2008,28(4):313-318.
    [21] 陈海燕, 李虎, 王立刚, 等. 京郊典型设施蔬菜地N2O排放规律及影响因素研究[J]. 中国土壤与肥料,2012(5):5-10.

    CHEN H Y, LI H, WANG L G, et al. Characteristics and influencing factors on nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs[J]. Soil and Fertilizer Sciences in China,2012(5):5-10.
    [22] WANG J Y, XIONG Z Q, YAN X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China[J]. Atmospheric Environment,2011,45(38):6923-6929. doi: 10.1016/j.atmosenv.2011.09.045
    [23] 仇少君, 彭佩钦, 荣湘民, 等. 淹水培养条件下土壤微生物生物量碳、氮和可溶性有机碳、氮的动态[J]. 应用生态学报,2006,17(11):2052-2058.

    QIU S J, PENG P Q, RONG X M, et al. Dynamics of soil microbial biomass and dissolved organic carbon and nitrogen under flooded condition[J]. Chinese Journal of Applied Ecology,2006,17(11):2052-2058.
    [24] 张旭博, 徐明岗, 张文菊, 等. 添加有机物料后红壤CO2释放特征与微生物生物量动态[J]. 中国农业科学,2011,44(24):5013-5020.

    ZHANG X B, XU M G, ZHANG W J, et al. Characteristics of CO2 emission and microbial biomass dynamics after adding various organic materials in red soil[J]. Scientia Agricultura Sinica,2011,44(24):5013-5020.
    [25] 何莉莉, 黄佳佳, 王梦洁, 等. 生物炭配施硝化抑制剂降低稻田土壤NH3和N2O排放的微生物机制[J]. 植物营养与肥料学报,2023,29(11):2030-2041.

    HE L L, HUANG J J, WANG M J, et al. Effects of biochar combined with nitrification inhibitor (DMPP) on reducing NH3 and N2O emission in paddy soil and its microbial mechanism[J]. Journal of Plant Nutrition and Fertilizers,2023,29(11):2030-2041.
    [26] GOLDBERG E. Black carbon in the environment: properties and distribution[M]. New York: John Wiley, 1985.
    [27] HAMER U, MARSCHNER B, BRODOWSKI S, et al. Interactive priming of black carbon and glucose mineralisation[J]. Organic Geochemistry,2004,35(7):823-830. doi: 10.1016/j.orggeochem.2004.03.003
    [28] LUO Y, DURENKAMP M, de NOBILI M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry,2011,43(11):2304-2314. doi: 10.1016/j.soilbio.2011.07.020
    [29] YIN Y F, HE X H, GAO R, et al. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon[J]. Journal of Integrative Agriculture,2014,13(3):491-498. doi: 10.1016/S2095-3119(13)60704-2
    [30] CHENG C H, LEHMANN J. Ageing of black carbon along a temperature gradient[J]. Chemosphere,2009,75(8):1021-1027. doi: 10.1016/j.chemosphere.2009.01.045
    [31] ZIMMERMAN A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science & Technology,2010,44(4):1295-1301.
    [32] BAGREEV A, BASHKOVA S, LOCKE D C, et al. Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide[J]. Environmental Science & Technology,2001,35(7):1537-1543.
    [33] LIU Y T, LI Y E, WAN Y F, et al. Nitrous oxide emissions from irrigated and fertilized spring maize in semi-arid Northern China[J]. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 287-295.
    [34] LI Y T, LI Y, YUE L, et al. Simulating N2O emissions from maize-cropped soil and the impact of climatic variations and cropland management in North China Plain[C]//Proceedings of the 19th World Congress of Soil Science: soil solutions for a changing world. Brisbane, 2010.
    [35] LEHMANN J, PEREIRA Da SILVA J, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil,2003,249(2):343-357. doi: 10.1023/A:1022833116184
    [36] ZHANG Q Z, DIJKSTRA F A, LIU X R, et al. Effects of biochar on soil microbial biomass after four years of consecutive application in the North China Plain[J]. PLoS One,2014,9(7):e102062. □ doi: 10.1371/journal.pone.0102062
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 录用日期:  2024-08-26
  • 修回日期:  2024-08-08

目录

    /

    返回文章
    返回