Study on distribution characteristics and influencing factors of agricultural and forestry soil nutrients of Chongming Island
-
摘要:
科学评价崇明岛农林土壤养分储存状况,阐述其空间分布特征,对于崇明岛农林生态可持续发展具有重要意义。针对上海崇明岛4种主要农林种植方式(粮田、菜田、果园和生态林)及3种代表性土壤类型(水稻土、潮土和滨海盐土),采集0~20 cm土壤样点100个,分析崇明岛农林土壤养分分布特征及其影响因素。结果表明:崇明岛农林土壤pH均值为7.99,电导率(EC)均值为0.56 mS/cm;有机质平均含量为17.29 g/kg,属于中下水平;全氮平均含量为1.91 g/kg,属于丰富水平;全磷平均含量为1.33 g/kg,属于中上水平。崇明岛的农林土壤基本呈碱性,中部的EC较低;土壤有机质含量在南部和中部较高,在东部偏低;全氮含量整体处于较高水平,中部偏高,西部偏低;全磷含量呈现出中部偏高,从南部向东北、东南方向逐步降低的分布格局。不同种植方式下各土壤养分指标均有显著性差异,粮田有机质含量最高,为19.20 g/kg;粮田与菜田全氮含量均较高,分别为2.09、2.17 g/kg;土壤EC与全磷含量表现为菜田>果园>粮田>生态林。不同类型土壤的全氮、全磷含量表现为水稻土>潮土>滨海盐土;潮土的有机质含量最高,为18.00 g/kg,EC最低。崇明岛农林土壤养分分布受种植方式的影响显著,选择粮田种植方式有助于崇明岛农林土壤养分提升。
Abstract:It is of great significance for the sustainable development of the agriculture and forestry ecology of Chongming Island in Shanghai to scientifically evaluate the storage status of agricultural and forestry soil nutrients and expound their spatial distribution characteristics. According to four main agricultural and forestry planting types (grain field, vegetable field, orchard and ecological forest) and three representative soil types (paddy soil, tidal soil and coastal saline soil), 100 soil samples of 0-20 cm were collected to analyze the distribution characteristics and influencing factors of agricultural and forestry soil nutrients of Chongming Island. The results showed that the average pH and electrical conductivity (EC) values of agricultural and forestry soils of Chongming Island were 7.99, 0.56 mS/cm, respectively, and the average organic matter content was 17.29 g/kg, belonging to the lower middle level; the average total nitrogen content was 1.91 g/kg, belonging to the rich level; and the average total phosphorus content was 1.33 g/kg, belonging to the upper middle level. The agricultural and forestry soil of Chongming Island was basically alkaline, with lower EC value in the central part, higher soil organic matter in the southern and central part and lower in the eastern part. Total nitrogen content was at a relatively high level in the middle and low in the west. The distribution pattern of total phosphorus was higher in the middle and decreased gradually from south to northeast and southeast. There were significant differences in soil nutrient indexes under different planting methods. Grain field had the highest organic matter content (19.20 g/kg) and vegetable field had the highest total nitrogen content (2.17 g/kg). Soil EC value and total phosphorus content were in the order of vegetable field > orchard > grain field > ecological forest. The contents of total nitrogen and total phosphorus in different soil types were paddy soil > tidal soil > coastal salt soil, while the highest organic matter content of tidal soil was 18.00 g/kg, with the lowest EC value. The distribution of agricultural and forestry soil nutrients of Chongming Island was significantly affected by planting methods. In summary, the selection of rice planting mode is conducive to the improvement of agricultural and forestry soil nutrients of Chongming Island.
-
Key words:
- Chongming Island /
- soil nutrients /
- spatial distribution /
- planting method /
- soil type
-
表 1 崇明岛不同农林土壤采样点数
Table 1. Different agricultural and forestry sampling points in Chongming Island
种植方式 土壤类型 采样点数/个 菜田 滨海盐土 2 潮土 2 水稻土 21 果园 滨海盐土 1 潮土 3 水稻土 10 粮田 滨海盐土 6 潮土 5 水稻土 39 生态林 滨海盐土 2 潮土 2 水稻土 7 表 2 崇明岛农林土壤养分的描述性统计特征
Table 2. Descriptive statistical characteristics of agricultural and forestry soil nutrients of Chongming Island
指标 pH EC/
(mS/cm)有机质含量/
(g/kg)全氮含量/
(g/kg)全磷含量/
(g/kg)最小值 6.37 0.17 6.20 0.63 0.58 最大值 8.76 5.46 37.30 5.39 7.43 平均值 7.99 0.56 17.29 1.91 1.33 标准差 0.44 0.97 5.94 0.85 0.99 变异系数/% 5.53 171.84 34.36 44.43 73.83 表 3 土壤主要养分分级标准
Table 3. Classification standard of main soil nutrients
g/kg 分级 有机质含量 全氮含量 全磷含量 极丰富(1级) >40 >2.00 >2.00 丰富(2级) 30~40 1.50~2.00 1.50~2.00 中上(3级) 20~30 1.00~1.50 1.00~1.50 中下(4级) 10~20 0.75~1.00 0.70~1.00 缺乏(5级) 6~10 0.50~0.75 0.40~0.70 极缺乏(6级) <6 <0.50 <0.40 表 4 崇明岛农林土壤养分的描述性统计特征
Table 4. Descriptive statistical characteristics of agricultural and forestry soil nutrients of Chongming Island
项目 pH EC/(mS/cm) 有机质含量/(g/kg) 全氮含量/(g/kg) 全磷含量/(g/kg) 种植方式 粮田 8.08±0.32a 0.28±0.07b 19.2±0.53a 2.09±0.59ab 1.03±0.21b 果园 8.11±0.42a 0.48±0.72b 15.5±0.71ab 1.48±0.70bc 1.42±1.02ab 菜田 7.58±0.46b 1.31±1.67a 17.0±0.55a 2.17±1.16a 2.08±1.58a 生态林 8.38±0.26a 0.25±0.08b 11.4±0.33b 1.02±0.26c 0.93±0.21b 土壤类型 水稻土 7.95±0.43a 0.61±1.06a 17.5±0.58a 2.02±0.85a 1.40±1.11a 潮土 8.19±0.46a 0.26±0.05a 18.0±0.70a 1.56±0.89a 1.11±0.16a 滨海盐土 9.07±0.47a 0.58±0.80a 15.0±0.54a 1.52±0.58a 1.09±0.35a 注:相同字母表示两组之间差异不显著,不同字母表示两组之间差异显著。 表 5 不同种植方式与土壤类型下土壤养分评级
Table 5. Soil nutrient rating under different planting methods and soil types
项目 有机质含量 全氮含量 全磷含量 种植方式 粮田 中下(4级) 极丰富(1级) 中上(3级) 果园 中下(4级) 中上(3级) 中上(3级) 菜田 中下(4级) 极丰富(1级) 极丰富(1级) 生态林 中下(4级) 中上(3级) 中下(4级) 土壤类型 水稻土 中下(4级) 极丰富(1级) 中上(3级) 潮土 中下(4级) 丰富(2级) 中上(3级) 滨海盐土 中下(4级) 丰富(2级) 中上(3级) 表 6 土壤养分对种植方式和土壤类型的响应
Table 6. Responses of soil nutrients to planting methods and soil types
指标 种植方式 土壤类型 种植方式与土壤类型的交互作用 F P F P F P pH 10.137 <0.001 1.875 0.159 2.257 0.045 EC 2.339 0.079 1.766 0.177 2.414 0.033 有机质含量 5.321 0.002 0.895 0.412 0.759 0.604 全氮含量 4.601 0.005 2.089 0.130 1.414 0.218 全磷含量 1.184 0.320 0.58 0.562 0.506 0.802 注:加粗数字表示影响显著(F>2或P<0.05)。 -
[1] 吴占景, 饶碧玉, 罗绍芹, 等. 不同土壤肥力对当归品质和产量的影响[J]. 南方农业学报,2011,42(11):1361-1364. doi: 10.3969/j.issn.2095-1191.2011.11.014WU Z J, RAO B Y, LUO S Q, et al. Influence of different soil fertility on yield and quality of angelica[J]. Journal of Southern Agriculture,2011,42(11):1361-1364. doi: 10.3969/j.issn.2095-1191.2011.11.014 [2] 赖宁, 陈署晃, 付彦博, 等. 基于GIS的南疆果园土壤肥力评价[J]. 新疆农业科学,2019,56(8):1476-1486.LAI N, CHEN S H, FU Y B, et al. Soil fertility evaluation of orchards in southern of Xinjiang based on GIS[J]. Xinjiang Agricultural Sciences,2019,56(8):1476-1486. [3] 夏春华, 方斌, 张志成, 等. 土壤养分空间分异对农地利用及其景观格局的响应: 以淮海经济区徐州市铜山区为例[J]. 生态学报, 2024, 44(19): 1-19.XIA C H, FANG B, ZHANG Z C, et al. Response of soil nutien spatial dilerentiation to agriculural land use and landecape patlern: taking Tongshan Districl, Xuzhou City, Huaihai Economic Zone as an example[J]. Acta Eeologica Sinica, 2024, 44(19): 1-19. [4] 卿小燕, 郭蕾, 赵克琼, 等. 松花坝水源区不同土地利用方式对土壤理化性质的影响[J]. 江西农业学报,2021,33(9):68-74.QING X Y, GUO L, ZHAO K Q, et al. Effects of different land use types on physicochemical properties of soil in Songhuaba Reservoir[J]. Acta Agriculturae Jiangxi,2021,33(9):68-74. [5] 张翰林, 宋科, 施俭, 等. 崇明岛深层土壤有机碳空间分布及碳储存特征分析[J]. 中国农业气象,2017,38(9):567-573.ZHANG H L, SONG K, SHI J, et al. Spatial distribution and storage feature of deep soil organic carbon in Chongming Island[J]. Chinese Journal of Agrometeorology,2017,38(9):567-573. [6] 宁沐蕾. 崇明不同土地利用方式对土壤碳、氮及微生物群落结构的影响[D]. 上海: 上海交通大学, 2017. [7] FANG X, XUE Z J, LI B C, et al. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China[J]. CATENA,2012,88(1):6-13. doi: 10.1016/j.catena.2011.07.012 [8] 张智顺. 崇明岛人工林群落特征及其土壤理化性质研究[D]. 上海: 华东师范大学, 2010. [9] 苏敬华, 王屿岑, 孔若楠, 等. 崇明岛稻田三种种植方式下中小型土壤动物群落多样性[J]. 动物学杂志,2023,58(3):381-389. [10] 史鸿志, 韩根成. 藓类泥炭对崇明岛潮土类耕地土壤养分及酸碱度的影响[J]. 安徽农学通报,2023,29(7):142-145. doi: 10.3969/j.issn.1007-7731.2023.07.033 [11] 王庆峰, 褚长彬, 赵峥, 等. 崇明三岛柑橘园土壤养分特征研究[J]. 上海农业学报,2022,38(2):70-75. [12] 贾娇, 何萍, 徐杰, 等. 天津中东部平原区土壤盐分空间分布特征[J]. 环境工程技术学报,2021,11(4):711-719. doi: 10.12153/j.issn.1674-991X.20200221JIA J, HE P, XU J, et al. Spatial distribution characteristics of soil salinity in the middle and eastern plain of Tianjin[J]. Journal of Environmental Engineering Technology,2021,11(4):711-719. doi: 10.12153/j.issn.1674-991X.20200221 [13] 何小勤. 长江口崇明东滩现代地貌过程研究[D]. 上海: 华东师范大学, 2004. [14] YANG S L, DING P X, CHEN S L. Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China[J]. Geomorphology,2001,38(1/2):167-180. [15] 隋淑梅, 刘明池, 崔锦, 等. 灌溉量对温室基质栽培茄子产量、品质与根区盐分积累的影响[J]. 节水灌溉,2023(11):56-65. doi: 10.12396/jsgg.2023218 [16] 孙玉冰, 邓守彦, 李德志, 等. 崇明县土壤主要理化指标的空间分布与变异特征[J]. 生态与农村环境学报,2010,26(4):306-312. doi: 10.3969/j.issn.1673-4831.2010.04.004SUN Y B, DENG S Y, LI D Z, et al. Spatial distribution and variability of main soil physical and chemical properties in Chongming and affecting factors[J]. Journal of Ecology and Rural Environment,2010,26(4):306-312. doi: 10.3969/j.issn.1673-4831.2010.04.004 [17] 张一清, 王文娥, 胡笑涛, 等. 土壤电导率对土壤含盐量及施肥浓度的响应试验研究[J]. 中国农业大学学报,2023,28(3):176-187. doi: 10.11841/j.issn.1007-4333.2023.03.16ZHANG Y Q, WANG W E, HU X T, et al. Experimental study on the response of soil conductivity to soil salt content and fertilizer concentration[J]. Journal of China Agricultural University,2023,28(3):176-187. doi: 10.11841/j.issn.1007-4333.2023.03.16 [18] WEI L, GE T D, ZHU Z K, et al. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers[J]. Agriculture, Ecosystems & Environment, 2022, 326: 107798. [19] 李凤博, 牛永志, 高文玲, 等. 耕作方式和秸秆还田对直播稻田土壤理化性质及其产量的影响[J]. 土壤通报,2008,39(3):549-552. doi: 10.3321/j.issn:0564-3945.2008.03.018LI F B, NIU Y Z, GAO W L, et al. Effects of tillage styles and straw return on soil properties and crop yields in direct seeding rice[J]. Chinese Journal of Soil Science,2008,39(3):549-552. doi: 10.3321/j.issn:0564-3945.2008.03.018 [20] 潘世娟. 长期定位施肥条件下水田土壤有机质和全氮累积变化研究[D]. 杨凌: 西北农林科技大学, 2011: 39. [21] LIU B, XIA H, JIANG C C, et al. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China[J]. Science of the Total Environment,2022,841:156608. doi: 10.1016/j.scitotenv.2022.156608 [22] 郭劲松, 黄轩民, 张彬, 等. 三峡库区消落带土壤有机质和全氮含量分布特征[J]. 湖泊科学,2012,24(2):213-219. doi: 10.3969/j.issn.1003-5427.2012.02.007GUO J S, HUANG X M, ZHANG B, et al. Distribution characteristics of organic matter and total nitrogen in the soils of water-levelfluctuating zone of Three Gorges Reservoir Area[J]. Journal of Lake Sciences,2012,24(2):213-219. doi: 10.3969/j.issn.1003-5427.2012.02.007 [23] CAMPBELL B J, KIRCHMAN D L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient[J]. The ISME Journal,2013,7(1):210-220. doi: 10.1038/ismej.2012.93 [24] 李俊良, 崔德杰, 孟祥霞, 等. 山东寿光保护地蔬菜施肥现状及问题的研究[J]. 土壤通报,2002,33(2):126-128. doi: 10.3321/j.issn:0564-3945.2002.02.014LI J L, CUI D J, MENG X X, et al. The study of fertilization condition and question in protectorate vegetable in Shouguang, Shandong[J]. Chinese Journal of Soil Science,2002,33(2):126-128. doi: 10.3321/j.issn:0564-3945.2002.02.014 [25] 陈碧华, 孙丽, 李新峥, 等. 新乡市大棚菜田土壤养分及盐分的演变[J]. 农业工程学报,2013,29(15):83-90. doi: 10.3969/j.issn.1002-6819.2013.15.011CHEN B H, SUN L, LI X Z, et al. Evolution of soil nutrient and salts in vegetable field of greenhouse in Xinxiang[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(15):83-90. doi: 10.3969/j.issn.1002-6819.2013.15.011 [26] 刘洋, 彭正萍, 王艳群, 等. 不同褐土区菜地与相邻粮田土壤性状比对研究[J]. 河北农业大学学报,2017,40(6):21-26.LIU Y, PENG Z P, WANG Y Q, et al. Study on the soil characters of vegetable field and adjacent grain field in different cinnamon areas[J]. Journal of Hebei Agricultural University,2017,40(6):21-26. [27] 廖思远, 秦延文, 刘志超, 等. 邛海流域设施葡萄园土壤养分与地下水污染特征研究[J]. 环境工程技术学报,2022,12(2):597-606. doi: 10.12153/j.issn.1674-991X.20210497LIAO S Y, QIN Y W, LIU Z C, et al. Characteristics of soil nutrients and groundwater pollution of greenhouse vineyards in Qionghai Lake Basin[J]. Journal of Environmental Engineering Technology,2022,12(2):597-606. doi: 10.12153/j.issn.1674-991X.20210497 [28] 李双喜, 袁大伟, 郑宪清, 等. 崇明岛典型果园氮素渗漏流失研究[J]. 江苏农业学报,2012,28(4):771-776. doi: 10.3969/j.issn.1000-4440.2012.04.016LI S X, YUAN D W, ZHENG X Q, et al. Nitrogen leaching losses in typical orchard of Chongming Island[J]. Jiangsu Journal of Agricultural Sciences,2012,28(4):771-776. doi: 10.3969/j.issn.1000-4440.2012.04.016 [29] 刘建文, 刘艳美. 对加强生态林建设与保护的思考[J]. 种子科技,2020,38(13):130-131. [30] 张文渊. 滨海地区盐碱土类型与形成条件分析[J]. 水土保持通报,1999,19(1):19. doi: 10.3969/j.issn.1000-288X.1999.01.004 [31] 刘广明, 彭世彰, 杨劲松. 不同控制灌溉方式下稻田土壤盐分动态变化研究[J]. 农业工程学报,2007,23(7):86-89. doi: 10.3321/j.issn:1002-6819.2007.07.016LIU G M, PENG S Z, YANG J S. Soil salt dynamics of rice field under different controlled irrigation conditions[J]. Transactions of the Chinese Society of Agricultural Engineering,2007,23(7):86-89. doi: 10.3321/j.issn:1002-6819.2007.07.016 [32] 马常宝, 卢昌艾, 任意, 等. 土壤地力和长期施肥对潮土区小麦和玉米产量演变趋势的影响[J]. 植物营养与肥料学报,2012,18(4):796-802. doi: 10.11674/zwyf.2012.11368MA C B, LU C A, REN Y, et al. Effect of soil fertility and long-term fertilizer application on the yields of wheat and maize in fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers,2012,18(4):796-802. doi: 10.11674/zwyf.2012.11368 [33] KAISER K, GUGGENBERGER G, HAUMAIER L, et al. Dissolved organic matter sorption on sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy[J]. European Journal of Soil Science,1997,48(2):301-310. doi: 10.1111/j.1365-2389.1997.tb00550.x [34] BU X L, DING J M, WANG L M, et al. Biodegradation and chemical characteristics of hot-water extractable organic matter from soil under four different vegetation types in the Wuyi Mountains, Southeastern China[J]. European Journal of Soil Biology,2011,47(2):102-107. doi: 10.1016/j.ejsobi.2010.11.009 [35] 文鑫, 王艺惠, 钟聪, 等. 贵州表层土壤有机质空间变异特征及其影响因素分析[J]. 水土保持学报,2023,37(3):218-224.WEN X, WANG Y H, ZHONG C, et al. Spatial variation of surface soil organic matter and its influencing factors in Guizhou Province[J]. Journal of Soil and Water Conservation,2023,37(3):218-224. □