-
摘要: 采用国产微米气泡发生装置,对比研究了微米气泡曝气与普通曝气对黑臭河水的处理效果。监测的出水水质指标包括土臭素〔Geosmin(蔡烷醇类)〕和2-甲基异莰醇〔2-MIB(冰片烷醇类)〕,以及CODCr,NH3-N,TP,色度和浊度。结果表明,在相同的曝气强度下,微米气泡曝气技术可产生更高的溶解氧(DO)浓度,60 min时水体的DO浓度达到9.87 mg/L,而普通曝气在100 min时才达到6.54 mg/L。在试验期间,微米气泡曝气在60~80 min内就能达到或非常接近其对污染物最高的处理效率,而普通曝气要在80 min后才能达到。另外,微米气泡曝气对CODCr,NH3-N,Geosmin和2-MIB的最大去除率分别比普通曝气高12%,10%,16%和12%。而由于气体的搅动,在曝气前期2种曝气方式下色度和浊度均有升高,60~80 min后才低于初始水平。Abstract: A microbubble generator produced domestically was used to treat the black-odor river water. A comparison study on treatment efficiency between the microbubble aeration and conventional aeration was carried out. Some important water quality indicators, including odorous chemicals (Geosmin and 2-MIB), CODCr, NH3-N, TP, color and turbidity were monitored during the experimental period. The results showed that microbubble generator produced higher DO concentration than conventional aeration under the same gas flow, and DO level produced by the former one was 9.87 mg/L in 60 min but only 6.54 mg/L in 100 min by the latter. During the experimental period, microbubble aeration obtained or was greatly closed to its highest removal rates of different pollutants at 60-80 min, while conventional aeration did not obtained or was greatly close to its highest removal rates until 80min or even later. Additionally, the removal rates of CODCr, NH3-N, Geosmin and 2-MIB coming from microbubble technology were 12%, 10%, 16% and 12% higher than those from the conventional aeration technology, respectively. The color and turbidity values increased at the beginning period because of the strong stirring from bubbles, and did not recover to their initial level until 60-80 min.
-
Key words:
- micro bubble /
- aeration /
- black-odor water /
- dissolved oxygen
-
[1] 应太林,张国莹,吴芯芯.苏州河水体黑臭机理及底质再悬浮对水体的影响[J].上海环境科学,1997,16(1):23-26. [2] 薛彤,张健君,张锡辉.深圳河流水体黑臭治理技术探讨[J],深圳土木与建筑,2007,4(2):48-53. [3] 钱嫦萍,陈振楼,王东启.城市河流黑臭的原因分析及生态危害[J].城市环境,2002,16(3):21-23. [4] 殷肇君.苏州河深水充气增氧方案的探讨[J].上海水产大学学报,1998,7(2):130-135. [5] LAZARO T R.Urban hydrology[M].Michigan:Ann Arbor Science Publishers Inc,1979. [6] 唐秀云.佛山汾江水体恶臭的化学因素特性研究[J].佛山科学技术学院学报:自然科学版,2003,21(2):63-66. [7] 温丽容,刘乙敏,刘国光,等.广东省跨市河流边界水质状况研究[J].生态环境,2004,13(2):177-179. [8] 戴雅奇,熊昀青,由文辉.疏浚对苏州河底栖动物群落结构的影响[J].华东师范大学学报:自然科学版,2003(3):53-56. [9] 许巍,孙水裕,袁斌.城镇污染河流修复技术研究进展[J].广东工业大学学报,2004,21(4):85-90. [10] 贺延龄.废水的厌氧生化处理[M].北京:中国轻工业出版社,1998. [11] 张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002. [12] GERSHERY M.A bubble adsorption device for the isolation of surface-active organic matter in seawater[J].Limnol Oceanogr,1983,28(2):395-400. [13] FUJIKAWA S,ZHANG R S.The control of micro-air-bubble generation by a rotational porours plate[J].Int J Multiphase Flow,2003,29(8):1221-1236. [14] CHOI Y J,PARK J Y,KIM Y J,et al.Flow characteristics of microbubble suspensions in porous media as an oxygen carrier[J].Clean,2008,36(1):59-65. [15] 李小兵,郭杰,周晓华,等.浮选气泡制造技术进展[J].选煤技术,2003(6):60-62. [16] MUEZZINOGLO A.A study of volatile organic sulfur emissions causing urban odors[J].Chemosphere,2003,51(4):245-252. [17] (MEL)SUFFET I H,KHIARI S,DJANETTE B,et al.The drinking water taste and odor wheel for the millennium:beyond geosmin and 2-methylisoborneol[J].Water Sci Technol,1999,40(6):1-13. [18] 田星,王涵文,刘文民,等.毛细管柱固相微萃取-气相色谱法联用测定水中机物[J].分析化学,2004,32(8):1023-1026. [19] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [20] 冯奇秀,谢骏,刘军.底泥生物氧化与城市黑臭河道治理[J].水利渔业,2003,23(6):42-44. [21] 陈致泰,李世刚,韩光瑶,等.微气泡纯氧曝气法处理甲醇废水[J].中国氮肥.2008(1):8-12. [22] LIU S,WANG Q H,MA H Z,et al.Effect of micro-bubbles on coagulation flotation process of dyeing wastewater[J].Sep Purif Technol,2010,71(3):337-346. [23] CHU L B,YAN S T,XING X H,et al.Enhanced sludge solubilization by microbubble ozonation [J].Chemosphere,2008,72(2):205-212. [24] CHOI Y J,KIM Y J,NAM K.Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension [J].Environ Pollut,2009,157(8/9):2197-2200. [25] 张立娟,陈浩,李朝霞,等.纳米气泡的长寿源于其高的内部密度[J].中国科学,2007,37(4):556-560.
点击查看大图
计量
- 文章访问数: 7144
- HTML全文浏览量: 257
- PDF下载量: 1589
- 被引次数: 0