Isolation, Identification and Characterization of Nitrobacteria for the Microbial Toxicity Testing System
-
摘要: 对某鱼塘污泥进行选择性富集筛选,得到4株高效硝化菌F1,F4,Y2,Z1。采用Sherlock微生物鉴定系统(Sherlock MIS)对4菌株进行全细胞脂肪酸成分分析鉴定,并结合生理生化指标分析,初步确定菌株F1和F4属于红球菌属(Rhodococcus),Y2属于假单胞菌属(Pseudomonas),Z1属于微球菌属(Micrococcus)。硝化速率试验表明:菌株F1,F4,Y2,Z1的硝化速率分别达到3.51,3.43,3.46,3.52 mg/(L·d);将4菌株等量混合组成复合菌,通过改变培养条件,进行综合条件下的L16(44)正交试验,在温度为35 ℃,pH为8.5,试液体积为250 mL,接种量为25%时,复合菌NH4+-N的转化率最高达到70.02%。影响硝化反应效果的因素依次为试液体积>温度>pH>接种量。Abstract: Four strains of high-efficiency nitrobacteria, F1, F4, Y2 and Z1, were isolated from one fishpond’s silt. The Sherlock microbial identification system (MIS) was used to perform the whole cellular fatty acid composition analysis and identification for the four strains, combined with physiological and biochemistry indexes analysis. They were preliminarily identified as Rhodococcus (F1 and F4), Pseudomonas (Y2) and Micrococcus (Z1). The test of nitrifying rate showed that the nitrifying rate of F1, F4, Y2 and Z1 reached 3.51, 3.43, 3.46 and 3.52 mg/(L·d), respectively. The four strains were mixed equally to form a bacterial complex and the orthogonal experiment under comprehensive cultivation conditions by changing cultivation conditions was carried out. The results showed that the highest NH4+-N conversion rate of 70.02% was obtained at 35℃, pH 8.5, with 20 mL medium content and 25% inoculum size. Factors affecting nitrification effectiveness were in the order of medium content > temperature > pH > inoculum size.
-
Key words:
- nitrifying bacteria /
- nitrifying rate /
- fatty acid analysis
-
[1] SMOLDERS R,BERVOETS L,BLUST R.In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems[J].Environ Pollut,2004,132(2):231. [2] TZORIS A,FERNANDEZ Perez V,HALL E A H.Di-rect toxicity assessment with a mini portable resp-ire meter[J].Sensors and Actuators B:Chemical,2005,105(1):39-49. [3] BHATIA R, DILLEEN J W,ATKINSON A L,et al.C-ombined physicochemical and biological sensing in environmental monitoring[J].Biosensors and Bioelectronics,2003,18(5/6):667. [4] WEX H,RAWSON D M,ZHANG T.Use of biosensor and impedance spectroscopy assays to investigate theinfluence of temperature on E.coli sensitivity to 3,5-dichlorophenol[J].Electrochimica Acta,2006,51(24):51-57. [5] MARINELLA F,OLIVIA P,CARMEN A M,et al.Toxicity assessment of organic pollution in wastewaters using a bacterial biosensor[J].Analytica Chimica Acta,2001,426(2):155. [6] LUISA F S,LUDWIG D,AXEL K B.Comparison of three microbial assay procedures for measuring toxicity of chemical compounds: ToxAlert 10, CellSense and Biolog MT2 microplates[J].Analytica Chimica Acta,2002,456(1):41. [7] WANG H,WANG X J,ZHAO J F,et al.Toxicity assessment of heavy metals and organic compounds using Cell Sense biosensor with E.coli[J].Chinese Chem Lett,2008,19(2):211. [8] 黄正,任恕.微生物传感器在污染物生物毒性分析中的应用[J].传感器技术,2004,23(9):4-6. [9] Konig A.Disposable sensor for measuring the biochemical oxygen demand for nitrification and inhibition of nitrification in wastewater[J].Appl Microbiol Biotechnol,1999,51:112-117. [10] Inui T,Tanaka Y,Okayas Y,et al.Application of toxicity monitor using nitrifying bacteria biosensor to sewerage systems[J].Water Sci Technol,2002,45(11/12) :271-278. [11] 曾庆梅,司文功,李志强,等.一株高效异养硝化菌的选育、鉴定及其硝化条件[J].微生物学报,2010,50(6):803-810. [12] 张国赏,吴文鹃,潘仁瑞.气相色谱-质谱法检测细胞脂肪酸及其在细菌鉴定上的应用[J].合肥联合大学学报,2000,10(4):92~96. [13] 吴愉萍,徐建明,汪海珍,等.Sherlock MIS 系统应用于土壤细菌鉴定的研究[J].土壤学报,2006,43(4):642-647. [14] Sandra Van den Velde,Katrien Lagrou,Koen Desmet,et al.Species identification of corynebacteria by cellular fatty acid analysis[J]. Diagnostic Microbiology and Infectious Disease,2006,54:99-104. [15] 胡朝松,李春强,刘志昕,等.海洋沉积物中反硝化细菌的分离鉴定及反硝化性能研究[J].环境科学研究,2009,22(1):114-118.
点击查看大图
计量
- 文章访问数: 5453
- HTML全文浏览量: 104
- PDF下载量: 1702
- 被引次数: 0