填埋场覆盖材料的甲烷氧化能力及其影响因素研究

Research on Methane Oxidation Capacity of Landfills Cover Materials and its Impact Factors

  • 摘要: 通过室内模拟试验比较了填埋场典型覆盖材料的CH4氧化特性,并进一步分析了温度、含水率和接种措施等对覆盖材料CH4氧化性能的影响。结果表明,覆盖材料的CH4氧化能力依次为陈腐垃圾>老覆土>堆肥>新覆土;含水率对物料CH4氧化速率的影响较大,且影响程度与物料的物理特性有关,最佳含水率在25%左右;覆盖材料的CH4氧化能力随着温度升高而先升高后降低,最佳温度约为25℃;此外,接种后新覆土的CH4氧化能力显著提高,建议采用接种比例为1∶10(质量比)。

     

    Abstract: Through indoor simulation experiments, the methane oxidation properties of typical landfill cover materials were compared, and the impacts of cultivation temperature, moisture content, and inoculation measures on the methane oxidation performance were further analyzed. The results showed that the order of methane oxidation capacity was: aged refuse > aged cover soil > compost > new cover soil. Methane oxidation rate of cover materials was dramatically affected by moisture content, the degree of which was related with the physical properties of tested materials, and the optimum moisture content was about 25%. Meanwhile, with temperature rising, methane oxidation rate of tested materials increased first and then decreased, and the best cultivation temperature was about 25 ℃. In addition, the methane oxidation rate increased significantly after the new cover soil was inoculated with aged refuse, and the inoculation proportion was recommended as 1:10 (aged refuse : new cover soil, m/m).

     

/

返回文章
返回