River shorelines are important components of the natural ecological space of rivers. In recent years, human activities have affected the ecological service function of river shorelines. In order to accurately carry out the restoration, it is urgent to develop a targeted evaluation index system and evaluation methods for the ecological service function of river shorelines. The type and structure of riverfronts were analyzed. Based on the relevant domestic research results and relevant technical specifications of water conservancy, environmental protection, marine and other industries, the ecological function evaluation indicators of riverfronts were preliminarily sorted out and comprehensively selected according to the principles of scientificity, comprehensiveness, independence and operability. Based on relevant technical specifications and research results, the utility values of each evaluation index were determined, and the evaluation method of riverfront ecological service function was developed. The results indicated that: 1) River shoreline could be divided into ecological protection type and ecological restoration type, the former could be subdivided into good vegetation type, desert type and rock type, and the latter could be subdivided into 7 types, including dike type, farmland type, village type, aquaculture pond type, town type, river mouth type and compound type. The riverfront had five ecological service functions: flood control, erosion control, water quality protection, biological habitat and landscape functions. 2) The constructed evaluation index system of river shoreline ecological service function included target layer, criterion layer and index layer. The target layer was the river shoreline ecological service function, and the criterion layer was the five ecological service functions corresponding to river shorelines. The index layer included flood control compliance rate, dike safety, vegetation coverage, bank slope stability, reasonable degree of sewage outfall layout, ecological buffer zone status, biological diversity index, plant community status, water bird status, landscape ecological value, and landscape comfort. The utility values of each indicator were defined as five grades based on the overall evaluation. 3) AHP was used to determine the weight of each evaluation index, and multi-attribute utility theory was used to calculate the comprehensive index of riverfront ecological service function, and the riverfront ecological service function was divided into five grades, i.e. excellent, good, medium, poor and extremely poor, so as to evaluate the status of riverfront ecological service function. This study could provide basis and reference for identifying ecological issues, evaluating the effectiveness of ecological restoration, and improving long-term mechanisms for river shoreline management.